File size: 25,719 Bytes
09407c4
f0b010e
e3461d1
09407c4
 
f0b010e
57c4c95
09407c4
e3461d1
09407c4
e3461d1
 
 
09407c4
 
e3461d1
09407c4
 
e3461d1
 
09407c4
 
 
57c4c95
09407c4
 
 
 
 
57c4c95
09407c4
 
 
 
 
57c4c95
09407c4
 
 
 
 
 
 
 
 
57c4c95
09407c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3461d1
 
 
 
 
 
 
 
09407c4
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b010e
e3461d1
7a7a883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3461d1
 
7a7a883
09407c4
 
e3461d1
09407c4
 
 
 
e3461d1
09407c4
 
 
 
 
 
 
164a34e
09407c4
2eb5290
 
f0b010e
2eb5290
 
 
f0b010e
2eb5290
 
e3461d1
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b010e
 
 
 
 
e3461d1
f0b010e
 
e3461d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b010e
 
 
 
d1ce750
 
 
 
 
f0b010e
 
 
 
 
e3461d1
 
 
 
 
 
64c9a18
09407c4
 
 
64c9a18
e3461d1
 
09407c4
e3461d1
09407c4
 
e3461d1
 
64c9a18
09407c4
64c9a18
e3461d1
09407c4
 
 
 
 
64c9a18
e3461d1
 
 
 
09407c4
64c9a18
09407c4
e3461d1
09407c4
 
 
 
e3461d1
64c9a18
09407c4
e3461d1
09407c4
64c9a18
 
 
 
09407c4
e3461d1
09407c4
 
e3461d1
64c9a18
e3461d1
 
09407c4
 
 
 
 
e3461d1
64c9a18
e3461d1
 
 
 
 
09407c4
e3461d1
09407c4
 
e3461d1
 
09407c4
 
64c9a18
 
09407c4
 
 
 
 
 
 
 
 
 
 
64c9a18
 
09407c4
 
64c9a18
 
09407c4
 
 
 
 
 
 
 
 
64c9a18
09407c4
64c9a18
09407c4
 
 
 
 
 
 
64c9a18
09407c4
 
 
64c9a18
e3461d1
f0b010e
 
0548742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0b010e
 
0548742
 
 
 
 
f0b010e
0548742
 
09407c4
f0b010e
e3461d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09407c4
 
 
 
e3461d1
 
09407c4
 
e3461d1
54aa468
 
 
 
 
 
 
 
 
 
997e875
54aa468
 
 
 
 
 
202b109
514d471
 
2eb5290
514d471
2eb5290
514d471
2eb5290
 
 
 
202b109
2eb5290
54aa468
e3461d1
 
 
 
f0b010e
 
 
 
54aa468
 
3dd1359
 
 
 
 
 
f0b010e
e3461d1
 
 
 
2eb5290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
514d471
 
 
 
 
 
 
 
 
 
 
 
 
2eb5290
 
e3461d1
 
dd22158
 
 
 
 
 
 
 
 
 
3ff0c13
 
dd22158
164a34e
 
 
 
 
 
 
3ff0c13
164a34e
dd22158
164a34e
dd22158
164a34e
 
dd22158
164a34e
 
dd22158
 
 
164a34e
3ff0c13
514d471
 
3ff0c13
dd22158
164a34e
dd22158
 
 
 
 
164a34e
 
 
 
2eb5290
164a34e
2eb5290
 
202b109
2eb5290
 
202b109
2eb5290
 
 
202b109
2eb5290
202b109
2eb5290
 
3ff0c13
2eb5290
514d471
2eb5290
 
 
 
 
048eb9e
514d471
 
048eb9e
 
dd22158
 
164a34e
 
 
3ff0c13
dd22158
164a34e
3ff0c13
0548742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64c9a18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09407c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
833113a
 
 
 
09407c4
 
 
 
833113a
 
 
09407c4
 
 
 
 
 
 
 
 
 
 
833113a
 
09407c4
 
 
833113a
 
 
 
09407c4
 
 
 
e3461d1
 
dd6a0b2
2eb5290
e3461d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
# Standard library imports
import re
import subprocess
import threading
import time
from pathlib import Path

# Third-party imports
import gradio as gr
import numpy as np
import pandas as pd
import torch
import spaces
from transformers import AutoModelForCausalLM
from transformers import modeling_utils as transformers_modeling

# Optional imports for markdown processing
try:
    from importlib import import_module
    from markdown_it import MarkdownIt
    HAS_MARKDOWN_IT = True
except ImportError:
    HAS_MARKDOWN_IT = False

try:
    import markdown
    HAS_PYTHON_MARKDOWN = True
except ImportError:
    HAS_PYTHON_MARKDOWN = False

try:
    from fastrtc import WebRTC, ReplyOnPause
    HAS_FASTRTC = True
except ImportError:
    HAS_FASTRTC = False

# ---------------------------
# Markdown rendering (Option A)
# ---------------------------

def _create_markdownit_renderer():
    """Create markdown-it renderer with plugins if available."""
    if not HAS_MARKDOWN_IT:
        return None
        
    try:
        markdown_parser = MarkdownIt("gfm-like")

        # Version-agnostic plugin loading
        footnote_module = import_module("mdit_py_plugins.footnote")
        footnote_plugin = getattr(footnote_module, "footnote", None) or getattr(footnote_module, "footnote_plugin")
        markdown_parser.use(footnote_plugin)

        tasklist_module = import_module("mdit_py_plugins.tasklists")
        tasklist_plugin = getattr(tasklist_module, "tasklists", None) or getattr(tasklist_module, "tasklists_plugin")
        markdown_parser.use(tasklist_plugin)

        container_module = import_module("mdit_py_plugins.container")
        container_plugin = getattr(container_module, "container", None) or getattr(container_module, "container_plugin")
        try:
            markdown_parser.use(container_plugin, "details")
        except TypeError:
            markdown_parser.use(lambda m: container_plugin(m, name="details"))
        return markdown_parser
    except Exception:
        return None

def _create_python_markdown_config():
    """Create Python-Markdown configuration as fallback."""
    if not HAS_PYTHON_MARKDOWN:
        return None
        
    extensions = [
        "extra",            # tables + fenced code
        "footnotes",
        "admonition",
        "toc",
        "pymdownx.details",
        "pymdownx.superfences",
        "pymdownx.tasklist",
    ]
    extension_config = {
        "pymdownx.tasklist": {"custom_checkbox": True}, 
        "toc": {"permalink": True}
    }
    return ("python-markdown", extensions, extension_config, markdown)

# Initialize markdown engine
markdown_renderer = _create_markdownit_renderer()
if markdown_renderer:
    markdown_engine = ("markdown-it", markdown_renderer)
else:
    markdown_engine = _create_python_markdown_config()
    if not markdown_engine:
        raise ImportError("No markdown processor available")

def _obsidian_rewrites(text: str) -> str:
    # 1) Obsidian image embeds: ![[img.png]]  ->  ![](file=content/img.png)
    text = re.sub(r'!\[\[([^\]|]+)\]\]', r'![](file=content/\1)', text)

    # 2) Standard Markdown images with relative paths: ![alt](path.png) -> ![alt](file=path.png)
    #    Skip if already http(s) or file=
    text = re.sub(
        r'!\[([^\]]*)\]\(((?!https?://|file=)[^)]+)\)',
        r'![\1](file=\2)',
        text,
    )

    # 3) Obsidian wiki links (non-image): [[file|label]] / [[file]]
    text = re.sub(r'\[\[([^\]|]+)\|([^\]]+)\]\]', r'[\2](\1)', text)
    text = re.sub(r'\[\[([^\]]+)\]\]', r'[\1](\1)', text)

    # 4) Encode spaces in file= URLs so the browser doesn’t choke
    def _enc(m):
        return "file=" + m.group(1).replace(" ", "%20")
    text = re.sub(r'file=([^)>\s]+)', _enc, text)

    return text


def markdown_to_html(text: str) -> str:
    """Convert markdown text to HTML using the configured renderer."""
    text = _obsidian_rewrites(text)
    
    if markdown_engine[0] == "markdown-it":
        renderer = markdown_engine[1]
        return renderer.render(text)
    else:
        engine_type, extensions, extension_config, markdown_module = markdown_engine
        return markdown_module.markdown(
            text, 
            extensions=extensions, 
            extension_configs=extension_config, 
            output_format="html5"
        )

def render_article(article_path: str, component_inserts: dict[str, callable]):
    raw = Path(article_path).read_text(encoding="utf-8") if Path(article_path).exists() else f"**Missing article**: `{article_path}`."
    parts = re.split(r"\{\{([A-Z_]+)\}\}", raw)
    with gr.Column():
        for i, part in enumerate(parts):
            if i % 2 == 0:
                gr.HTML(f'<div class="article">{markdown_to_html(part)}</div>')
            else:
                (component_inserts.get(part) or (lambda: gr.HTML(f"<p><em>Unknown component: {part}</em></p>")))()


# ---------------------------
# Terminal (safe, simplified)
# ---------------------------

def run_shell(cmd: str) -> str:
    banned = ["|", ">", "<", "&&", "||", "`"]
    if any(b in cmd for b in banned):
        return "$ " + cmd + "\nBlocked characters. Use a single command."
    try:
        p = subprocess.run(cmd, shell=True, check=False, capture_output=True, text=True, timeout=30)
        return f"$ {cmd}\n{p.stdout}{p.stderr}"
    except Exception as e:
        return f"$ {cmd}\n{e!r}"

def build_terminal():
    with gr.Group():
        cmd = gr.Textbox(label="Command", value="python -c 'import torch; print(torch.__version__)'")
        run = gr.Button("Run")
        out = gr.Textbox(label="Output", lines=12, interactive=False)
        run.click(run_shell, inputs=cmd, outputs=out)

# ---------------------------------------
# Attention Mask Visualizer (Transformers)
# ---------------------------------------

def _import_attention_visualizer():
    try:
        from transformers.utils.attention_visualizer import AttentionMaskVisualizer  # type: ignore
    except Exception as e:
        raise RuntimeError(
            "AttentionMaskVisualizer is unavailable in this Transformers version."
        ) from e
    return AttentionMaskVisualizer

@spaces.GPU(duration=120)
def render_attention_mask(model_id: str, prompt: str) -> str:
    try:
        AttentionMaskVisualizer = _import_attention_visualizer()
        vis = AttentionMaskVisualizer(model_id)
        out = vis(prompt)  # returns embeddable HTML or object with _repr_html_
        return str(out)
    except Exception as e:
        return f"<p>Attention visualizer error: {e}</p>"

def build_attn_vis():
    with gr.Group():
        with gr.Row():
            model = gr.Dropdown(
                label="Model",
                choices=["openai-community/gpt2", "google/gemma-2-2b"],
                value="openai-community/gpt2",
                allow_custom_value=True,
            )
            prompt = gr.Textbox(label="Prompt", value="You are an assistant. Make sure you print me.")
            go = gr.Button("Render")
        html = gr.HTML()
        go.click(render_attention_mask, inputs=[model, prompt], outputs=html)

# -------------------------------------------------------
# Transformers caching allocator warmup (time vs MiB plot)
# -------------------------------------------------------


def _measure_load_timeline(model_id: str, disable_warmup: bool):
    """Measure memory usage during model loading with/without cache warmup."""
    original_warmup_func = getattr(transformers_modeling, "caching_allocator_warmup", None)
    if disable_warmup and original_warmup_func is not None:
        transformers_modeling.caching_allocator_warmup = lambda *args, **kwargs: None
    
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        timeline_data = []

        def sample_memory(start_time, stop_event):
            while not stop_event.is_set():
                if device == "cuda":
                    torch.cuda.synchronize()
                    # Use max memory to capture peaks better
                    allocated_memory = torch.cuda.max_memory_allocated()
                    torch.cuda.reset_peak_memory_stats()
                else:
                    allocated_memory = 0
                timeline_data.append({
                    "t": time.perf_counter() - start_time, 
                    "MiB": allocated_memory / (1024**2)
                })
                time.sleep(0.02)  # Sample more frequently

        if device == "cuda":
            torch.cuda.empty_cache()
            torch.cuda.reset_peak_memory_stats()
            initial_memory = torch.cuda.memory_allocated()
        else:
            initial_memory = 0

        start_time = time.perf_counter()
        stop_event = threading.Event()
        memory_thread = threading.Thread(target=sample_memory, args=(start_time, stop_event), daemon=True)
        memory_thread.start()

        # Load model with appropriate settings
        model_kwargs = {"low_cpu_mem_usage": True}
        if device == "cuda":
            model_kwargs.update({
                "torch_dtype": torch.float16, 
                "device_map": "cuda:0"
            })
        
        model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)

        stop_event.set()
        memory_thread.join()

        # Final memory measurement
        if device == "cuda":
            torch.cuda.synchronize()
            final_memory = torch.cuda.memory_allocated()
            timeline_data.append({
                "t": time.perf_counter() - start_time, 
                "MiB": final_memory / (1024**2)
            })

        # Clean up
        del model
        if device == "cuda":
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()

        return timeline_data
    finally:
        if original_warmup_func is not None:
            transformers_modeling.caching_allocator_warmup = original_warmup_func

@spaces.GPU(duration=240)
def profile_warmup_comparison(model_id: str):
    """Profile memory usage with and without cache warmup."""
    if not torch.cuda.is_available():
        # Create dummy data for CPU demo
        time_points = np.linspace(0, 5, 50)
        base_memory = np.cumsum(np.random.exponential(50, 50))
        warmup_enabled_data = [
            {"t": t, "MiB": mem, "mode": "πŸš€ Warmup ON (Optimized)"} 
            for t, mem in zip(time_points, base_memory * 0.8)
        ]
        warmup_disabled_data = [
            {"t": t, "MiB": mem, "mode": "πŸ“ˆ Warmup OFF (Standard)"} 
            for t, mem in zip(time_points, base_memory)
        ]
        return pd.DataFrame(warmup_enabled_data + warmup_disabled_data)
    
    try:
        warmup_enabled_timeline = _measure_load_timeline(model_id, disable_warmup=False)
        warmup_disabled_timeline = _measure_load_timeline(model_id, disable_warmup=True)
        
        # Create DataFrame with better labeling
        all_data = []
        all_data.extend([
            {"t": entry["t"], "MiB": entry["MiB"], "mode": "πŸš€ Warmup ON (Optimized)"} 
            for entry in warmup_enabled_timeline
        ])
        all_data.extend([
            {"t": entry["t"], "MiB": entry["MiB"], "mode": "πŸ“ˆ Warmup OFF (Standard)"} 
            for entry in warmup_disabled_timeline
        ])
        
        result_dataframe = pd.DataFrame(all_data)
        
        # Calculate and log memory savings
        if warmup_enabled_timeline and warmup_disabled_timeline:
            peak_with_warmup = max(entry["MiB"] for entry in warmup_enabled_timeline)
            peak_without_warmup = max(entry["MiB"] for entry in warmup_disabled_timeline)
            if peak_without_warmup > 0:
                savings_percent = ((peak_without_warmup - peak_with_warmup) / peak_without_warmup * 100)
                print(f"Memory savings: {savings_percent:.1f}% (Peak: {peak_with_warmup:.0f} MiB vs {peak_without_warmup:.0f} MiB)")
        
        return result_dataframe
    except Exception as error:
        print(f"Error profiling {model_id}: {error}")
        return pd.DataFrame(columns=["t", "MiB", "mode"])

def build_alloc_plot():
    with gr.Group():
        gr.Markdown("### πŸš€ Cache Pre-allocator Performance Demo")
        gr.Markdown("Compare model loading with and without transformers' caching allocator warmup. This demonstrates the memory efficiency improvements.")
        
        with gr.Row():
            model = gr.Dropdown(
                label="Model to Profile",
                choices=[
                    "openai-community/gpt2", 
                    "google/gemma-2-2b",
                    "microsoft/DialoGPT-small",
                    "facebook/opt-125m"
                ],
                value="openai-community/gpt2",
                allow_custom_value=True,
                info="Select a model or enter a custom HuggingFace model ID"
            )
            go = gr.Button("πŸ”₯ Profile Memory", variant="primary")
        
        plot = gr.LinePlot(
            x="t", y="MiB", color="mode", overlay_point=True,
            title="Memory Allocation Timeline: Warmup ON vs OFF",
            tooltip=["t", "MiB", "mode"], 
            width=900, height=450,
            x_title="Time (seconds)",
            y_title="Memory (MiB)"
        )
        
        gr.Markdown("**Note**: This demo requires GPU access. The warmup feature reduces peak memory usage during model loading.")
        go.click(profile_warmup_comparison, inputs=[model], outputs=plot)

# ---------------------------
# Optional FastRTC preview
# ---------------------------

try:
    from fastrtc import WebRTC, ReplyOnPause  # type: ignore
    def _echo_video(frame):
        yield frame
    HAS_FASTRTC = True
except Exception:
    HAS_FASTRTC = False

def build_fastrtc():
    if not HAS_FASTRTC:
        gr.Markdown("Install `fastrtc` to enable this section.")
        return
    
    def echo_video_frame(frame):
        yield frame
    
    with gr.Group():
        gr.Markdown("Camera loopback using FastRTC WebRTC. Extend with streaming handlers later.")
        webrtc_component = WebRTC(mode="send-receive", modality="video")
        webrtc_component.stream(ReplyOnPause(echo_video_frame), inputs=[webrtc_component], outputs=[webrtc_component], time_limit=60)

# ---------------------------
# Image display functions
# ---------------------------

def build_image(filename):
    def _build():
        # Try both content/ and static/ directories
        for directory in ['content', 'static']:
            filepath = Path(directory) / filename
            if filepath.exists():
                gr.Image(value=str(filepath), show_label=False, interactive=False, show_download_button=False)
                return
        gr.Markdown(f"*Image not found: {filename}*")
    return _build

def build_d3_graph():
    with gr.Group():
        gr.Markdown("### πŸ”— Interactive Model Dependency Graph")
        fp = Path("static/d3_dependency_graph.html")
        if fp.exists():
            gr.HTML(
                """
                <iframe src="file=static/d3_dependency_graph.html"
                        sandbox="allow-scripts allow-same-origin"
                        style="width:100%;height:640px;border:1px solid #e2e8f0;border-radius:8px"
                        loading="lazy"></iframe>
                """
            )
        else:
            gr.Markdown("⚠️ **D3 dependency graph not found.** Put it at `static/d3_dependency_graph.html`.")

# ---------------------------
# Inserts registry
# ---------------------------

INSERTS = {
    "TERMINAL": build_terminal,
    "ATTN_VIS": build_attn_vis,
    "ALLOC_PLOT": build_alloc_plot,
    "D3_GRAPH": build_d3_graph,
    # Image inserts
    "GRAPH_MODULAR_RELATED_MODELS": build_image("graph_modular_related_models.png"),
    "JACCARD_SIMILARITY_PLOT": build_image("Jaccard_similarity_plot.png"),
    "BLOATEDNESS_VISUALIZER": build_image("Bloatedness_visualizer.png"),
    "MODULAR_CANDIDATES": build_image("modular_candidates.png"),
    "POPULAR_MODELS_BARPLOT": build_image("popular_models_barplot.png"),
    "MODEL_DEBUGGER": build_image("model_debugger.png"),
}

# ---------------------------
# Layout / CSS / App
# ---------------------------
HLJS = """
<link rel="stylesheet"
      href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/styles/github.min.css">
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/highlight.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/11.9.0/languages/python.min.js"></script>
<script>
(function(){
  function run() {
    document.querySelectorAll('pre code').forEach((el) => { hljs.highlightElement(el); });
  }
  run();
  const mo = new MutationObserver(run);
  mo.observe(document.body, {subtree: true, childList: true});
})();
</script>
<script>
(function(){
  function highlightAll() {
    document.querySelectorAll('pre code').forEach((el) => { hljs.highlightElement(el); });
    document.querySelectorAll('.article ol > li').forEach((li) => {
      if (li.querySelector(':scope > a[id]')) li.classList.add('tenet');
    });
  }
  highlightAll();
  new MutationObserver(highlightAll).observe(document.body, {subtree: true, childList: true});
})();
</script>

"""


CSS = """
/* Force light palette + high contrast */
:root,
.gradio-container {
  color-scheme: light !important;
  --body-background-fill: #ffffff !important;
  --body-text-color: #0b0f19 !important;              /* main text */
  --body-text-color-subdued: #0b0f19 !important;      /* kill the grey tint */
  --heading-text-color: #0b0f19 !important;
  --link-text-color: #1d4ed8 !important;
  --border-color: #e5e7eb !important;
}

/* Font (slightly heavier by default to avoid β€œspindly” Inter on Linux) */
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;500;600;700&display=swap');
@font-face {
  font-family: 'Inter var';
  font-style: normal;
  font-weight: 100 900;
  font-display: swap;
  src: url('https://rsms.me/inter/font-files/Inter.var.woff2?v=3.19') format('woff2');
}
html, body, .gradio-container { background: #fff !important; }
.gradio-container { font-family: 'Inter','Inter var',system-ui,-apple-system,Segoe UI,Roboto,sans-serif !important; }

/* Layout */
#layout { display: grid; grid-template-columns: 280px 1fr; gap: 2rem; }
#toc { position: sticky; top: 1rem; height: calc(100vh - 2rem); overflow: auto; padding-right: 1rem; }
#toc a { display: block; padding: .5rem 0; color: #334155; font-size: .9rem; text-decoration: none; font-weight: 500; }
#toc a:hover { color: var(--link-text-color); }

/* HARD override: make sure no parent opacity dulls the article */
.gradio-container .gr-html,
.gradio-container .gr-html * {
  opacity: 1 !important;
}
/* scope body text color to prose only */
.article { color: var(--body-text-color); }

/* Scope article typography */
.article { max-width: 72ch; margin: 0 auto; }
.article p, .article li { font-size: 1.04rem; line-height: 1.85rem; font-weight: 500; }
.article h1, .article h2, .article h3, .article h4 { color: var(--heading-text-color) !important; }
.article h1 { font-weight: 700; font-size: 2.25rem; line-height: 2.6rem; margin: 2rem 0 1.25rem; }
.article h2 { font-weight: 650; font-size: 1.85rem; line-height: 2.25rem; margin: 2rem 0 1rem; }
.article h3 { font-weight: 600; font-size: 1.5rem; line-height: 2rem; margin: 1.5rem 0 .75rem; }

.article a { color: var(--link-text-color) !important; text-decoration: underline; }
.article a:hover { text-decoration: none; }

/* Code blocks (keep container styling, let hljs theme handle token colors) */
.article pre {
  background: #f8fafc !important;
  border: 1px solid #e2e8f0 !important;
  border-radius: 8px !important;
  padding: 1.25rem !important;
  margin: 1.5rem 0 !important;
  overflow-x: auto !important;
  font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", monospace !important;
  font-size: .92rem !important;
  line-height: 1.6 !important;
}
.article pre code { background: transparent !important; padding: 0 !important; }

/* Let the theme show through */
.hljs { background: transparent !important; }

/* Tenets highlight: any list item that contains an anchor id gets a card look */
.article ol > li.tenet {
  border-left: 4px solid #1d4ed8;
  background: #f8fafc;
  padding: .75rem 1rem;
  margin: .5rem 0;
  border-radius: 8px;
}
.article ol > li.tenet::marker { color: #1d4ed8; font-weight: 700; }
.article ol > li.tenet code { background: #e0e7ff !important; }


/* Blockquotes, images, rules */
.article blockquote { border-left: 4px solid var(--link-text-color); padding-left: 1rem; margin: 1.25rem 0; color: #334155 !important; font-style: italic; }
.article img { display: block; max-width: 100%; height: auto; margin: 1.25rem auto; border-radius: 8px; box-shadow: 0 6px 20px rgba(0,0,0,.08); }
hr { border: 0; border-top: 1px solid var(--border-color); margin: 2rem 0; }
.section { scroll-margin-top: 80px; }

/* Keep widgets full width */
.gr-form, .gr-panel, .gr-block { max-width: none; }

/* Terminal styling - match light mode */
.gr-textbox textarea {
  background: #f8fafc !important;
  color: #1f2937 !important;
  border: 1px solid var(--border-color) !important;
  border-radius: 8px !important;
  font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", monospace !important;
  font-size: 0.9rem !important;
  line-height: 1.5 !important;
}

.gr-textbox textarea:focus {
  border-color: var(--link-text-color) !important;
  box-shadow: 0 0 0 2px rgba(37, 99, 235, 0.1) !important;
}

/* Terminal output specifically */
.gr-textbox textarea[readonly] {
  background: #111827 !important;
  color: #f9fafb !important;
  border: 1px solid #374151 !important;
  font-weight: 500 !important;
}

/* Terminal input */
.gr-textbox:not(textarea[readonly]) textarea {
  background: #ffffff !important;
  color: #1f2937 !important;
  border: 1px solid var(--border-color) !important;
}

/* Button styling */
.gr-button {
  background: var(--link-text-color) !important;
  color: white !important;
  border: none !important;
  border-radius: 6px !important;
  font-weight: 600 !important;
  padding: 0.5rem 1rem !important;
}

.gr-button:hover {
  background: #1d4ed8 !important;
}

/* Dropdown styling - fix contrast and visibility */
.gr-dropdown {
  background: #ffffff !important;
  border: 1px solid var(--border-color) !important;
  border-radius: 8px !important;
}

.gr-dropdown .gr-box {
  background: #ffffff !important;
  border: 1px solid var(--border-color) !important;
}

.gr-dropdown input {
  background: #ffffff !important;
  color: #1f2937 !important;
  border: none !important;
  font-weight: 500 !important;
}

.gr-dropdown .options {
  background: #ffffff !important;
  border: 1px solid var(--border-color) !important;
  border-radius: 8px !important;
  box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1) !important;
}

.gr-dropdown .option {
  background: #ffffff !important;
  color: #1f2937 !important;
  padding: 0.75rem !important;
  font-weight: 500 !important;
}

.gr-dropdown .option:hover {
  background: #f8fafc !important;
  color: #1f2937 !important;
}

.gr-dropdown .option.selected {
  background: var(--link-text-color) !important;
  color: white !important;
}

/* Fix label styling */
.gr-dropdown label {
  color: #374151 !important;
  font-weight: 600 !important;
  margin-bottom: 0.5rem !important;
}

/* Fix contrast for all interactive components */
.gr-form, .gr-panel, .gr-block {
  background: #ffffff !important;
  border: 1px solid var(--border-color) !important;
  border-radius: 8px !important;
}

/* Fix text inputs */
.gr-textbox input {
  background: #ffffff !important;
  color: #1f2937 !important;
  border: 1px solid var(--border-color) !important;
  font-weight: 500 !important;
}

/* Fix all labels - but not in article */
.gr-form:not(.article) label, 
.gr-panel:not(.article) label, 
.gr-block:not(.article) label {
  color: #374151 !important;
  font-weight: 600 !important;
}

/* Fix info text - but not in article */
.gr-form:not(.article) .gr-info, 
.gr-panel:not(.article) .gr-info {
  color: #6b7280 !important;
  font-weight: 500 !important;
}

/* Fix plot styling */
.gr-plot {
  border: 1px solid var(--border-color) !important;
  border-radius: 8px !important;
  background: #ffffff !important;
}

/* Fix markdown in components - but protect article content */
.gr-markdown:not(.article):not(.article *) {
  color: #1f2937 !important;
}

.gr-markdown:not(.article):not(.article *) h1, 
.gr-markdown:not(.article):not(.article *) h2, 
.gr-markdown:not(.article):not(.article *) h3, 
.gr-markdown:not(.article):not(.article *) h4 {
  color: #111827 !important;
  font-weight: 600 !important;
}

"""

with gr.Blocks(css=CSS, fill_height=True, title="Interactive Blog β€” Transformers Feature Showcase") as demo:
    gr.HTML(HLJS)
    gr.HTML("<h1>Transformers Feature Showcase</h1><p>Interactive, scrollable demo.</p>")
    with gr.Row(elem_id="layout"):
        with gr.Column(scale=0):
            gr.HTML(
                """
                <nav id="toc">
                  <h3>Sections</h3>
                  <a href="#article">Article</a>
                  <a href="#rtc">FastRTC (preview)</a>
                </nav>
                """
            )
        with gr.Column():
            gr.HTML('<h2 id="article" class="section">Article</h2>')
            # Author in Obsidian. Put {{ALLOC_PLOT}}, {{ATTN_VIS}}, {{TERMINAL}} where you want widgets.
            render_article("content/article.md", INSERTS)
            gr.HTML("<hr/>")

            gr.HTML('<h2 id="rtc" class="section">FastRTC (preview)</h2>')
            build_fastrtc()

if __name__ == "__main__":
    demo.launch()