File size: 7,648 Bytes
e903a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env node

// Generate synthetic Trackio-like CSV data with realistic ML curves.
// - Steps are simple integers (e.g., 1..N)
// - Metrics: epoch, train_accuracy, val_accuracy, train_loss, val_loss
// - W&B-like run names (e.g., pleasant-flower-1)
// - Deterministic with --seed
//
// Usage:
//   node app/scripts/generate-trackio-data.mjs \
//     --runs 3 \
//     --steps 10 \
//     --out app/src/content/assets/data/trackio_wandb_synth.csv \
//     [--seed 42] [--epoch-max 3.0] [--amount 1.0] [--start 1]
//
// To overwrite the demo file used by the embed:
//   node app/scripts/generate-trackio-data.mjs --runs 3 --steps 10 --out app/src/content/assets/data/trackio_wandb_demo.csv --seed 1337

import fs from 'node:fs/promises';
import path from 'node:path';

function parseArgs(argv){
  const args = { runs: 3, steps: 10, out: '', seed: undefined, epochMax: 3.0, amount: 1, start: 1 };
  for (let i = 2; i < argv.length; i++){
    const a = argv[i];
    if (a === '--runs' && argv[i+1]) { args.runs = Math.max(1, parseInt(argv[++i], 10) || 3); continue; }
    if (a === '--steps' && argv[i+1]) { args.steps = Math.max(2, parseInt(argv[++i], 10) || 10); continue; }
    if (a === '--out' && argv[i+1]) { args.out = argv[++i]; continue; }
    if (a === '--seed' && argv[i+1]) { args.seed = Number(argv[++i]); continue; }
    if (a === '--epoch-max' && argv[i+1]) { args.epochMax = Number(argv[++i]) || 3.0; continue; }
    if (a === '--amount' && argv[i+1]) { args.amount = Number(argv[++i]) || 1.0; continue; }
    if (a === '--start' && argv[i+1]) { args.start = parseInt(argv[++i], 10) || 1; continue; }
  }
  if (!args.out) {
    args.out = path.join('app', 'src', 'content', 'assets', 'data', 'trackio_wandb_synth.csv');
  }
  return args;
}

function mulberry32(seed){
  let t = seed >>> 0;
  return function(){
    t += 0x6D2B79F5;
    let r = Math.imul(t ^ (t >>> 15), 1 | t);
    r ^= r + Math.imul(r ^ (r >>> 7), 61 | r);
    return ((r ^ (r >>> 14)) >>> 0) / 4294967296;
  };
}

function makeRng(seed){
  if (Number.isFinite(seed)) return mulberry32(seed);
  return Math.random;
}

function randn(rng){
  // Box-Muller transform
  let u = 0, v = 0;
  while (u === 0) u = rng();
  while (v === 0) v = rng();
  return Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v);
}

function clamp(x, lo, hi){
  return Math.max(lo, Math.min(hi, x));
}

function logistic(t, k=6, x0=0.5){
  // 1 / (1 + e^{-k (t - x0)}) in [0,1]
  return 1 / (1 + Math.exp(-k * (t - x0)));
}

function expDecay(t, k=3){
  // (1 - e^{-k t}) in [0,1]
  return 1 - Math.exp(-k * t);
}

function pick(array, rng){
  return array[Math.floor(rng() * array.length) % array.length];
}

function buildRunNames(count, rng){
  const adjectives = [
    'pleasant','brisk','silent','ancient','bold','gentle','rapid','shy','curious','lively',
    'fearless','soothing','glossy','hidden','misty','bright','calm','keen','noble','swift'
  ];
  const nouns = [
    'flower','glade','sky','river','forest','ember','comet','meadow','harbor','dawn',
    'mountain','prairie','breeze','valley','lagoon','desert','monsoon','reef','thunder','willow'
  ];
  const names = new Set();
  let attempts = 0;
  while (names.size < count && attempts < count * 20){
    attempts++;
    const left = pick(adjectives, rng);
    const right = pick(nouns, rng);
    const idx = 1 + Math.floor(rng() * 9);
    names.add(`${left}-${right}-${idx}`);
  }
  return Array.from(names);
}

function formatLike(value, decimals){
  return Number.isFinite(decimals) && decimals >= 0 ? value.toFixed(decimals) : String(value);
}

async function main(){
  const args = parseArgs(process.argv);
  const rng = makeRng(args.seed);

  // Steps: integers from start .. start+steps-1
  const steps = Array.from({ length: args.steps }, (_, i) => args.start + i);
  const stepNorm = (i) => (i - steps[0]) / (steps[steps.length-1] - steps[0]);

  const runs = buildRunNames(args.runs, rng);

  // Per-run slight variations
  const runParams = runs.map((_r, idx) => {
    const r = rng();
    // Final accuracies
    const trainAccFinal = clamp(0.86 + (r - 0.5) * 0.12 * args.amount, 0.78, 0.97);
    const valAccFinal = clamp(trainAccFinal - (0.02 + rng() * 0.05), 0.70, 0.95);
    // Loss plateau
    const lossStart = 7.0 + (rng() - 0.5) * 0.10 * args.amount; // ~7.0 ±0.05
    const lossPlateau = 6.78 + (rng() - 0.5) * 0.04 * args.amount; // ~6.78 ±0.02
    const lossK = 2.0 + rng() * 1.5; // decay speed
    // Acc growth steepness and midpoint
    const kAcc = 4.5 + rng() * 3.0;
    const x0Acc = 0.35 + rng() * 0.25;
    return { trainAccFinal, valAccFinal, lossStart, lossPlateau, lossK, kAcc, x0Acc };
  });

  const lines = [];
  lines.push('run,step,metric,value,stderr');

  // EPOCH: linear 0..epochMax across steps
  for (let r = 0; r < runs.length; r++){
    const run = runs[r];
    for (let i = 0; i < steps.length; i++){
      const t = stepNorm(steps[i]);
      const epoch = args.epochMax * t;
      lines.push(`${run},${steps[i]},epoch,${formatLike(epoch, 2)},`);
    }
  }

  // TRAIN LOSS & VAL LOSS
  for (let r = 0; r < runs.length; r++){
    const run = runs[r];
    const p = runParams[r];
    let prevTrain = null;
    let prevVal = null;
    for (let i = 0; i < steps.length; i++){
      const t = stepNorm(steps[i]);
      const d = expDecay(t, p.lossK); // 0..1
      let trainLoss = p.lossStart - (p.lossStart - p.lossPlateau) * d;
      let valLoss = trainLoss + 0.02 + (rng() * 0.03);
      // Add mild noise
      trainLoss += randn(rng) * 0.01 * args.amount;
      valLoss += randn(rng) * 0.012 * args.amount;
      // Keep reasonable and mostly monotonic (small upward blips allowed)
      if (prevTrain != null) trainLoss = Math.min(prevTrain + 0.01, trainLoss);
      if (prevVal != null) valLoss = Math.min(prevVal + 0.012, valLoss);
      prevTrain = trainLoss; prevVal = valLoss;
      const stderrTrain = clamp(0.03 - 0.02 * t + Math.abs(randn(rng)) * 0.003, 0.006, 0.04);
      const stderrVal = clamp(0.035 - 0.022 * t + Math.abs(randn(rng)) * 0.003, 0.008, 0.045);
      lines.push(`${run},${steps[i]},train_loss,${formatLike(trainLoss, 3)},${formatLike(stderrTrain, 3)}`);
      lines.push(`${run},${steps[i]},val_loss,${formatLike(valLoss, 3)},${formatLike(stderrVal, 3)}`);
    }
  }

  // TRAIN ACCURACY & VAL ACCURACY (logistic)
  for (let r = 0; r < runs.length; r++){
    const run = runs[r];
    const p = runParams[r];
    for (let i = 0; i < steps.length; i++){
      const t = stepNorm(steps[i]);
      const accBase = logistic(t, p.kAcc, p.x0Acc);
      let trainAcc = clamp(0.55 + accBase * (p.trainAccFinal - 0.55), 0, 1);
      let valAcc = clamp(0.52 + accBase * (p.valAccFinal - 0.52), 0, 1);
      // Gentle noise
      trainAcc = clamp(trainAcc + randn(rng) * 0.005 * args.amount, 0, 1);
      valAcc = clamp(valAcc + randn(rng) * 0.006 * args.amount, 0, 1);
      const stderrTrain = clamp(0.02 - 0.011 * t + Math.abs(randn(rng)) * 0.002, 0.006, 0.03);
      const stderrVal = clamp(0.022 - 0.012 * t + Math.abs(randn(rng)) * 0.002, 0.007, 0.032);
      lines.push(`${run},${steps[i]},train_accuracy,${formatLike(trainAcc, 4)},${formatLike(stderrTrain, 3)}`);
      lines.push(`${run},${steps[i]},val_accuracy,${formatLike(valAcc, 4)},${formatLike(stderrVal, 3)}`);
    }
  }

  // Ensure directory exists
  await fs.mkdir(path.dirname(args.out), { recursive: true });
  await fs.writeFile(args.out, lines.join('\n') + '\n', 'utf8');
  const relOut = path.relative(process.cwd(), args.out);
  console.log(`Synthetic CSV generated: ${relOut}`);
}

main().catch(err => { console.error(err?.stack || String(err)); process.exit(1); });