#!/usr/bin/env node // Generate synthetic Trackio-like CSV data with realistic ML curves. // - Steps are simple integers (e.g., 1..N) // - Metrics: epoch, train_accuracy, val_accuracy, train_loss, val_loss // - W&B-like run names (e.g., pleasant-flower-1) // - Deterministic with --seed // // Usage: // node app/scripts/generate-trackio-data.mjs \ // --runs 3 \ // --steps 10 \ // --out app/src/content/assets/data/trackio_wandb_synth.csv \ // [--seed 42] [--epoch-max 3.0] [--amount 1.0] [--start 1] // // To overwrite the demo file used by the embed: // node app/scripts/generate-trackio-data.mjs --runs 3 --steps 10 --out app/src/content/assets/data/trackio_wandb_demo.csv --seed 1337 import fs from 'node:fs/promises'; import path from 'node:path'; function parseArgs(argv){ const args = { runs: 3, steps: 10, out: '', seed: undefined, epochMax: 3.0, amount: 1, start: 1 }; for (let i = 2; i < argv.length; i++){ const a = argv[i]; if (a === '--runs' && argv[i+1]) { args.runs = Math.max(1, parseInt(argv[++i], 10) || 3); continue; } if (a === '--steps' && argv[i+1]) { args.steps = Math.max(2, parseInt(argv[++i], 10) || 10); continue; } if (a === '--out' && argv[i+1]) { args.out = argv[++i]; continue; } if (a === '--seed' && argv[i+1]) { args.seed = Number(argv[++i]); continue; } if (a === '--epoch-max' && argv[i+1]) { args.epochMax = Number(argv[++i]) || 3.0; continue; } if (a === '--amount' && argv[i+1]) { args.amount = Number(argv[++i]) || 1.0; continue; } if (a === '--start' && argv[i+1]) { args.start = parseInt(argv[++i], 10) || 1; continue; } } if (!args.out) { args.out = path.join('app', 'src', 'content', 'assets', 'data', 'trackio_wandb_synth.csv'); } return args; } function mulberry32(seed){ let t = seed >>> 0; return function(){ t += 0x6D2B79F5; let r = Math.imul(t ^ (t >>> 15), 1 | t); r ^= r + Math.imul(r ^ (r >>> 7), 61 | r); return ((r ^ (r >>> 14)) >>> 0) / 4294967296; }; } function makeRng(seed){ if (Number.isFinite(seed)) return mulberry32(seed); return Math.random; } function randn(rng){ // Box-Muller transform let u = 0, v = 0; while (u === 0) u = rng(); while (v === 0) v = rng(); return Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v); } function clamp(x, lo, hi){ return Math.max(lo, Math.min(hi, x)); } function logistic(t, k=6, x0=0.5){ // 1 / (1 + e^{-k (t - x0)}) in [0,1] return 1 / (1 + Math.exp(-k * (t - x0))); } function expDecay(t, k=3){ // (1 - e^{-k t}) in [0,1] return 1 - Math.exp(-k * t); } function pick(array, rng){ return array[Math.floor(rng() * array.length) % array.length]; } function buildRunNames(count, rng){ const adjectives = [ 'pleasant','brisk','silent','ancient','bold','gentle','rapid','shy','curious','lively', 'fearless','soothing','glossy','hidden','misty','bright','calm','keen','noble','swift' ]; const nouns = [ 'flower','glade','sky','river','forest','ember','comet','meadow','harbor','dawn', 'mountain','prairie','breeze','valley','lagoon','desert','monsoon','reef','thunder','willow' ]; const names = new Set(); let attempts = 0; while (names.size < count && attempts < count * 20){ attempts++; const left = pick(adjectives, rng); const right = pick(nouns, rng); const idx = 1 + Math.floor(rng() * 9); names.add(`${left}-${right}-${idx}`); } return Array.from(names); } function formatLike(value, decimals){ return Number.isFinite(decimals) && decimals >= 0 ? value.toFixed(decimals) : String(value); } async function main(){ const args = parseArgs(process.argv); const rng = makeRng(args.seed); // Steps: integers from start .. start+steps-1 const steps = Array.from({ length: args.steps }, (_, i) => args.start + i); const stepNorm = (i) => (i - steps[0]) / (steps[steps.length-1] - steps[0]); const runs = buildRunNames(args.runs, rng); // Per-run slight variations const runParams = runs.map((_r, idx) => { const r = rng(); // Final accuracies const trainAccFinal = clamp(0.86 + (r - 0.5) * 0.12 * args.amount, 0.78, 0.97); const valAccFinal = clamp(trainAccFinal - (0.02 + rng() * 0.05), 0.70, 0.95); // Loss plateau const lossStart = 7.0 + (rng() - 0.5) * 0.10 * args.amount; // ~7.0 ±0.05 const lossPlateau = 6.78 + (rng() - 0.5) * 0.04 * args.amount; // ~6.78 ±0.02 const lossK = 2.0 + rng() * 1.5; // decay speed // Acc growth steepness and midpoint const kAcc = 4.5 + rng() * 3.0; const x0Acc = 0.35 + rng() * 0.25; return { trainAccFinal, valAccFinal, lossStart, lossPlateau, lossK, kAcc, x0Acc }; }); const lines = []; lines.push('run,step,metric,value,stderr'); // EPOCH: linear 0..epochMax across steps for (let r = 0; r < runs.length; r++){ const run = runs[r]; for (let i = 0; i < steps.length; i++){ const t = stepNorm(steps[i]); const epoch = args.epochMax * t; lines.push(`${run},${steps[i]},epoch,${formatLike(epoch, 2)},`); } } // TRAIN LOSS & VAL LOSS for (let r = 0; r < runs.length; r++){ const run = runs[r]; const p = runParams[r]; let prevTrain = null; let prevVal = null; for (let i = 0; i < steps.length; i++){ const t = stepNorm(steps[i]); const d = expDecay(t, p.lossK); // 0..1 let trainLoss = p.lossStart - (p.lossStart - p.lossPlateau) * d; let valLoss = trainLoss + 0.02 + (rng() * 0.03); // Add mild noise trainLoss += randn(rng) * 0.01 * args.amount; valLoss += randn(rng) * 0.012 * args.amount; // Keep reasonable and mostly monotonic (small upward blips allowed) if (prevTrain != null) trainLoss = Math.min(prevTrain + 0.01, trainLoss); if (prevVal != null) valLoss = Math.min(prevVal + 0.012, valLoss); prevTrain = trainLoss; prevVal = valLoss; const stderrTrain = clamp(0.03 - 0.02 * t + Math.abs(randn(rng)) * 0.003, 0.006, 0.04); const stderrVal = clamp(0.035 - 0.022 * t + Math.abs(randn(rng)) * 0.003, 0.008, 0.045); lines.push(`${run},${steps[i]},train_loss,${formatLike(trainLoss, 3)},${formatLike(stderrTrain, 3)}`); lines.push(`${run},${steps[i]},val_loss,${formatLike(valLoss, 3)},${formatLike(stderrVal, 3)}`); } } // TRAIN ACCURACY & VAL ACCURACY (logistic) for (let r = 0; r < runs.length; r++){ const run = runs[r]; const p = runParams[r]; for (let i = 0; i < steps.length; i++){ const t = stepNorm(steps[i]); const accBase = logistic(t, p.kAcc, p.x0Acc); let trainAcc = clamp(0.55 + accBase * (p.trainAccFinal - 0.55), 0, 1); let valAcc = clamp(0.52 + accBase * (p.valAccFinal - 0.52), 0, 1); // Gentle noise trainAcc = clamp(trainAcc + randn(rng) * 0.005 * args.amount, 0, 1); valAcc = clamp(valAcc + randn(rng) * 0.006 * args.amount, 0, 1); const stderrTrain = clamp(0.02 - 0.011 * t + Math.abs(randn(rng)) * 0.002, 0.006, 0.03); const stderrVal = clamp(0.022 - 0.012 * t + Math.abs(randn(rng)) * 0.002, 0.007, 0.032); lines.push(`${run},${steps[i]},train_accuracy,${formatLike(trainAcc, 4)},${formatLike(stderrTrain, 3)}`); lines.push(`${run},${steps[i]},val_accuracy,${formatLike(valAcc, 4)},${formatLike(stderrVal, 3)}`); } } // Ensure directory exists await fs.mkdir(path.dirname(args.out), { recursive: true }); await fs.writeFile(args.out, lines.join('\n') + '\n', 'utf8'); const relOut = path.relative(process.cwd(), args.out); console.log(`Synthetic CSV generated: ${relOut}`); } main().catch(err => { console.error(err?.stack || String(err)); process.exit(1); });