File size: 22,728 Bytes
49fffdb c7954ca 49fffdb 57be256 c7954ca 57be256 4989641 49fffdb 4989641 fb3d815 4989641 fb3d815 4989641 49fffdb c7954ca 4989641 49fffdb 065764c 1afbdec 065764c 1afbdec 065764c 4989641 065764c 4989641 065764c 4989641 1afbdec 065764c 1afbdec 065764c 4989641 065764c 1afbdec 065764c 4989641 1afbdec 2c2d476 1afbdec c7954ca 1afbdec 4989641 065764c 2c2d476 1afbdec 2c2d476 1afbdec 065764c 2c2d476 c7954ca 1afbdec 065764c 1afbdec 065764c 1afbdec 065764c c7954ca 4989641 c7954ca aa16ad3 c7954ca 4989641 49fffdb 1afbdec 4989641 1afbdec 065764c 1afbdec 065764c 1afbdec 065764c 1afbdec 065764c 1afbdec 065764c c7954ca 065764c c7954ca 065764c 1afbdec 065764c 1afbdec 065764c 4989641 fb3d815 2c2d476 4989641 2c2d476 fb3d815 3498588 c7954ca 3498588 4989641 2c2d476 c7954ca 2c2d476 fb3d815 c7954ca 2c2d476 fb3d815 c7954ca 2c2d476 c7954ca 3498588 065764c 1afbdec 065764c 1afbdec 065764c 4989641 c7954ca fb3d815 4989641 2c2d476 4989641 c7954ca fb3d815 4989641 2c2d476 4989641 065764c 4989641 3498588 c7954ca 065764c 4989641 065764c 49fffdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import gradio as gr
# Configure matplotlib to prevent memory warnings and set dark background
matplotlib.rcParams['figure.max_open_warning'] = 0
matplotlib.rcParams['figure.facecolor'] = '#000000'
matplotlib.rcParams['axes.facecolor'] = '#000000'
matplotlib.rcParams['savefig.facecolor'] = '#000000'
plt.ioff() # Turn off interactive mode to prevent figure accumulation
# Sample test results with test names
MODELS = {
"llama": {
"amd": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore"],
"failed": ["network_timeout"],
"skipped": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu"],
"error": []
},
"nvidia": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
"failed": ["network_timeout", "distributed"],
"skipped": ["multi_gpu"],
"error": []
}
},
"gemma3": {
"amd": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation"],
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu", "opencl_init", "driver_conflict", "memory_bandwidth", "compute_units", "rocm_version", "hip_compile", "kernel_launch", "buffer_transfer", "atomic_ops", "wavefront_sync"],
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw", "latency", "throughput"],
"error": []
},
"nvidia": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
"failed": ["distributed", "multi_gpu", "cuda_version", "nvcc_compile", "stream_sync", "device_reset", "peer_access", "unified_memory", "texture_bind", "surface_write", "constant_mem", "shared_mem"],
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw"],
"error": []
}
},
"csm": {
"amd": {
"passed": [],
"failed": [],
"skipped": [],
"error": ["system_crash"]
},
"nvidia": {
"passed": [],
"failed": [],
"skipped": [],
"error": ["system_crash"]
}
}
}
def generate_underlined_line(text: str) -> str:
return text + "\n" + "β" * len(text) + "\n"
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
model_stats = MODELS[model_name]
# Softer color palette - less pastel, more vibrant
colors = {
'passed': '#4CAF50', # Medium green
'failed': '#E53E3E', # More red
'skipped': '#FFD54F', # Medium yellow
'error': '#8B0000' # Dark red
}
# Convert test lists to counts for chart display
amd_stats = {k: len(v) for k, v in model_stats['amd'].items()}
nvidia_stats = {k: len(v) for k, v in model_stats['nvidia'].items()}
# Filter out categories with 0 values for cleaner visualization
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
if not amd_filtered and not nvidia_filtered:
# Handle case where all values are 0 - minimal empty state
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, 'No test results available',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=16, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig, "", ""
# Create figure with two subplots side by side with padding
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
ax1.set_facecolor('#000000')
ax2.set_facecolor('#000000')
def create_pie_chart(ax, device_label, filtered_stats):
if not filtered_stats:
ax.text(0.5, 0.5, 'No test results',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_title(device_label,
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
fontfamily='monospace')
ax.axis('off')
return
chart_colors = [colors[category] for category in filtered_stats.keys()]
# Create minimal pie chart - full pie, no donut effect
wedges, texts, autotexts = ax.pie(
filtered_stats.values(),
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
colors=chart_colors,
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
startangle=90,
explode=None, # No separation
shadow=False,
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
)
# Enhanced percentage text styling for better readability
for autotext in autotexts:
autotext.set_color('#000000') # Black text for better contrast
autotext.set_weight('bold')
autotext.set_fontsize(14)
autotext.set_fontfamily('monospace')
# Minimal category labels
for text in texts:
text.set_color('#AAAAAA')
text.set_weight('normal')
text.set_fontsize(13)
text.set_fontfamily('monospace')
# Device label closer to chart and bigger
ax.set_title(device_label,
fontsize=28, weight='normal', pad=2, color='#FFFFFF',
fontfamily='monospace')
# Create both pie charts with device labels
create_pie_chart(ax1, "amd", amd_filtered)
create_pie_chart(ax2, "nvidia", nvidia_filtered)
# Add subtle separation line between charts - stops at device labels level
line_x = 0.5
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85],
color='#333333', linewidth=1, alpha=0.5,
transform=fig.transFigure))
# Add central shared title for model name
fig.suptitle(f'{model_name.lower()}',
fontsize=32, weight='bold', color='#CCCCCC',
fontfamily='monospace', y=0.95)
# Clean layout with padding and space for central title
plt.tight_layout()
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
# Generate separate failed tests info for AMD and NVIDIA with exclusive/common separation
amd_failed = set(model_stats['amd']['failed'])
nvidia_failed = set(model_stats['nvidia']['failed'])
# Find exclusive and common failures
amd_exclusive = amd_failed - nvidia_failed
nvidia_exclusive = nvidia_failed - amd_failed
common_failures = amd_failed & nvidia_failed
# Build AMD info
amd_failed_info = ""
if not amd_exclusive and not common_failures:
msg = "Error(s) detected" if model_stats["amd"]["error"] else "No failures"
amd_failed_info += generate_underlined_line(msg)
if amd_exclusive:
amd_failed_info += generate_underlined_line("Failures on AMD (exclusive):")
amd_failed_info += "\n".join(sorted(amd_exclusive))
amd_failed_info += "\n\n" if common_failures else ""
if common_failures:
amd_failed_info += generate_underlined_line("Failures on AMD (common):")
amd_failed_info += "\n".join(sorted(common_failures))
# Build NVIDIA info
nvidia_failed_info = ""
if not nvidia_exclusive and not common_failures:
msg = "Error(s) detected" if model_stats["nvidia"]["error"] else "No failures"
nvidia_failed_info += generate_underlined_line(msg)
if nvidia_exclusive:
nvidia_failed_info += generate_underlined_line("Failures on NVIDIA (exclusive):")
nvidia_failed_info += "\n".join(sorted(nvidia_exclusive))
nvidia_failed_info += "\n\n" if common_failures else ""
if common_failures:
nvidia_failed_info += generate_underlined_line("Failures on NVIDIA (common):")
nvidia_failed_info += "\n".join(sorted(common_failures))
return fig, amd_failed_info, nvidia_failed_info
def get_model_stats_summary(model_name: str) -> tuple:
"""Get summary stats for a model (total tests, success rate, status indicator)."""
stats = MODELS[model_name]
# Combine AMD and NVIDIA results
total_passed = len(stats['amd']['passed']) + len(stats['nvidia']['passed'])
total_failed = len(stats['amd']['failed']) + len(stats['nvidia']['failed'])
total_skipped = len(stats['amd']['skipped']) + len(stats['nvidia']['skipped'])
total_error = len(stats['amd']['error']) + len(stats['nvidia']['error'])
total = total_passed + total_failed + total_skipped + total_error
success_rate = (total_passed / total * 100) if total > 0 else 0
# Determine status indicator color
if success_rate >= 80:
status_class = "success-high"
elif success_rate >= 50:
status_class = "success-medium"
else:
status_class = "success-low"
return total, success_rate, status_class
# Custom CSS for dark theme
dark_theme_css = """
/* Global dark theme */
.gradio-container {
background-color: #000000 !important;
color: white !important;
}
/* Remove borders from all components */
.gr-box, .gr-form, .gr-panel {
border: none !important;
background-color: #000000 !important;
}
/* Sidebar styling */
.sidebar {
background: linear-gradient(145deg, #111111, #1a1a1a) !important;
border: none !important;
padding: 25px !important;
box-shadow: inset 2px 2px 5px rgba(0, 0, 0, 0.3) !important;
margin: 0 !important;
height: 100vh !important;
position: fixed !important;
left: 0 !important;
top: 0 !important;
width: 300px !important;
}
/* Enhanced model button styling */
.model-button {
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
color: white !important;
border: 2px solid transparent !important;
margin: 2px 0 !important;
border-radius: 5px !important;
padding: 8px 12px !important;
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important;
position: relative !important;
overflow: hidden !important;
box-shadow:
0 4px 15px rgba(0, 0, 0, 0.2),
inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
font-weight: 600 !important;
font-size: 16px !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
font-family: monospace !important;
}
.model-button:hover {
background: linear-gradient(135deg, #3a3a3a, #2e2e2e) !important;
color: #74b9ff !important;
}
.model-button:active {
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
color: #5a9bd4 !important;
}
/* Model stats badge */
.model-stats {
display: flex !important;
justify-content: space-between !important;
align-items: center !important;
margin-top: 8px !important;
font-size: 12px !important;
opacity: 0.8 !important;
}
.stats-badge {
background: rgba(116, 185, 255, 0.2) !important;
padding: 4px 8px !important;
border-radius: 10px !important;
font-weight: 500 !important;
font-size: 11px !important;
color: #74b9ff !important;
}
.success-indicator {
width: 8px !important;
height: 8px !important;
border-radius: 50% !important;
display: inline-block !important;
margin-right: 6px !important;
}
.success-high { background-color: #4CAF50 !important; }
.success-medium { background-color: #FF9800 !important; }
.success-low { background-color: #F44336 !important; }
/* Regular button styling for non-model buttons */
.gr-button:not(.model-button) {
background-color: #222222 !important;
color: white !important;
border: 1px solid #444444 !important;
margin: 5px 0 !important;
border-radius: 8px !important;
transition: all 0.3s ease !important;
}
.gr-button:not(.model-button):hover {
background-color: #333333 !important;
border-color: #666666 !important;
}
/* Plot container with smooth transitions */
.plot-container {
background-color: #000000 !important;
border: none !important;
transition: opacity 0.6s ease-in-out !important;
}
/* Gradio plot component styling */
.gr-plot {
background-color: #000000 !important;
transition: opacity 0.6s ease-in-out !important;
}
.gr-plot .gradio-plot {
background-color: #000000 !important;
transition: opacity 0.6s ease-in-out !important;
}
.gr-plot img {
transition: opacity 0.6s ease-in-out !important;
}
/* Target the plot wrapper */
div[data-testid="plot"] {
background-color: #000000 !important;
}
/* Target all possible plot containers */
.plot-container img,
.gr-plot img,
.gradio-plot img {
background-color: #000000 !important;
}
/* Ensure plot area background */
.gr-plot > div,
.plot-container > div {
background-color: #000000 !important;
}
/* Prevent white flash during plot updates */
.plot-container::before {
content: "";
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #000000;
z-index: -1;
}
/* Force all plot elements to have black background */
.plot-container *,
.gr-plot *,
div[data-testid="plot"] * {
background-color: #000000 !important;
}
/* Override any white backgrounds in matplotlib */
.plot-container canvas,
.gr-plot canvas {
background-color: #000000 !important;
}
/* Text elements */
h1, h2, h3, p, .markdown {
color: white !important;
}
/* Sidebar header enhancement */
.sidebar h1 {
background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
text-align: center !important;
margin-bottom: 15px !important;
font-size: 28px !important;
font-weight: 700 !important;
font-family: monospace !important;
}
/* Sidebar description text */
.sidebar p {
text-align: center !important;
margin-bottom: 20px !important;
line-height: 1.5 !important;
font-size: 14px !important;
font-family: monospace !important;
}
.sidebar strong {
color: #74b9ff !important;
font-weight: 600 !important;
font-family: monospace !important;
}
.sidebar em {
color: #a29bfe !important;
font-style: normal !important;
opacity: 0.9 !important;
font-family: monospace !important;
}
/* Remove all borders globally */
* {
border-color: transparent !important;
}
/* Main content area */
.main-content {
background-color: #000000 !important;
padding: 20px !important;
margin-left: 300px !important;
}
/* Failed tests display - seamless appearance with fixed height */
.failed-tests textarea {
background-color: #000000 !important;
color: #FFFFFF !important;
font-family: monospace !important;
font-size: 14px !important;
border: none !important;
padding: 10px !important;
outline: none !important;
line-height: 1.4 !important;
height: 200px !important;
max-height: 200px !important;
min-height: 200px !important;
overflow-y: auto !important;
resize: none !important;
scrollbar-width: thin !important;
scrollbar-color: #333333 #000000 !important;
scroll-behavior: auto;
transition: opacity 0.5s ease-in-out !important;
}
/* WebKit scrollbar styling for failed tests */
.failed-tests textarea::-webkit-scrollbar {
width: 8px !important;
}
.failed-tests textarea::-webkit-scrollbar-track {
background: #000000 !important;
}
.failed-tests textarea::-webkit-scrollbar-thumb {
background-color: #333333 !important;
border-radius: 4px !important;
}
.failed-tests textarea::-webkit-scrollbar-thumb:hover {
background-color: #555555 !important;
}
/* Prevent white flash in text boxes during updates */
.failed-tests::before {
content: "";
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #000000;
z-index: -1;
}
.failed-tests {
background-color: #000000 !important;
height: 220px !important;
max-height: 220px !important;
position: relative;
transition: opacity 0.5s ease-in-out !important;
}
.failed-tests .gr-textbox {
background-color: #000000 !important;
border: none !important;
height: 200px !important;
max-height: 200px !important;
transition: opacity 0.5s ease-in-out !important;
}
/* Force all textbox elements to have black background */
.failed-tests *,
.failed-tests .gr-textbox *,
.failed-tests textarea * {
background-color: #000000 !important;
}
/* JavaScript to reset scroll position */
.scroll-reset {
animation: resetScroll 0.1s ease;
}
@keyframes resetScroll {
0% { scroll-behavior: auto; }
100% { scroll-behavior: auto; }
}
"""
# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo:
with gr.Row():
# Sidebar for model selection
with gr.Column(scale=1, elem_classes=["sidebar"]):
gr.Markdown("# π€ AI Models")
gr.Markdown("**Select a model to analyze test results**\n\n*Interactive dashboard with detailed metrics*")
# Model selection buttons in sidebar
model_buttons = []
for model_name in MODELS.keys():
btn = gr.Button(
f"{model_name.lower()}",
variant="secondary",
size="lg",
elem_classes=["model-button"]
)
model_buttons.append(btn)
# Main content area
with gr.Column(scale=4, elem_classes=["main-content"]):
gr.Markdown("# π Test Results Dashboard")
# Create the plot output
plot_output = gr.Plot(
label="",
format="png",
elem_classes=["plot-container"]
)
# Create two separate failed tests displays in a row layout
with gr.Row():
with gr.Column(scale=1):
amd_failed_tests_output = gr.Textbox(
value="Failures on AMD (exclusive):\nβββββββββββββββββββββββββββββ\nnetwork_timeout\n\nFailures on AMD (common):\nββββββββββββββββββββββββ\ndistributed",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
with gr.Column(scale=1):
nvidia_failed_tests_output = gr.Textbox(
value="Failures on NVIDIA (exclusive):\nβββββββββββββββββββββββββββββββββ\nmulti_gpu\n\nFailures on NVIDIA (common):\nββββββββββββββββββββββββββββ\ndistributed",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
# Set up click handlers for each button
for i, (model_name, button) in enumerate(zip(MODELS.keys(), model_buttons)):
button.click(
fn=lambda name=model_name: plot_model_stats(name),
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
).then(
fn=None,
js="() => { setTimeout(() => { document.querySelectorAll('textarea').forEach(t => { if (t.closest('.failed-tests')) { t.scrollTop = 0; setTimeout(() => { t.style.scrollBehavior = 'smooth'; t.scrollTo({ top: 0, behavior: 'smooth' }); t.style.scrollBehavior = 'auto'; }, 50); } }); }, 300); }"
)
# Initialize with the first model
demo.load(
fn=lambda: plot_model_stats(list(MODELS.keys())[0]),
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
)
if __name__ == "__main__":
demo.launch()
|