ror's picture
ror HF Staff
Scoll is nice but animation to cover bottom start
c8a335c
raw
history blame
18.7 kB
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
# Sample test results with test names
MODELS = {
"llama": {
"amd": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore"],
"failed": ["network_timeout"],
"skipped": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu"],
"error": []
},
"nvidia": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
"failed": ["network_timeout", "distributed"],
"skipped": ["multi_gpu"],
"error": []
}
},
"gemma3": {
"amd": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation"],
"failed": ["gpu_accel", "cuda_ops", "ml_inference", "tensor_ops", "distributed", "multi_gpu", "opencl_init", "driver_conflict", "memory_bandwidth", "compute_units", "rocm_version", "hip_compile", "kernel_launch", "buffer_transfer", "atomic_ops", "wavefront_sync"],
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw", "latency", "throughput"],
"error": []
},
"nvidia": {
"passed": ["auth_login", "data_validation", "api_response", "file_upload", "cache_hit", "user_permissions", "db_query", "session_mgmt", "input_sanitize", "rate_limit", "error_handling", "memory_alloc", "thread_safety", "backup_restore", "config_load", "log_rotation", "health_check", "metrics", "alerts", "monitoring", "security_scan", "password_hash", "jwt_token", "oauth_flow", "csrf_protect", "xss_filter", "sql_injection", "rate_limiter", "load_balance", "circuit_break", "retry_logic", "timeout_handle", "graceful_shutdown", "hot_reload", "config_watch", "env_vars", "secrets_mgmt", "tls_cert", "encryption", "compression", "serialization", "deserialization", "validation", "gpu_accel", "cuda_ops", "ml_inference", "tensor_ops"],
"failed": ["distributed", "multi_gpu", "cuda_version", "nvcc_compile", "stream_sync", "device_reset", "peer_access", "unified_memory", "texture_bind", "surface_write", "constant_mem", "shared_mem"],
"skipped": ["perf_test", "stress_test", "load_test", "endurance", "benchmark", "profiling", "memory_leak", "cpu_usage", "disk_io", "network_bw"],
"error": []
}
},
"csm": {
"amd": {
"passed": [],
"failed": [],
"skipped": [],
"error": ["system_crash"]
},
"nvidia": {
"passed": [],
"failed": [],
"skipped": [],
"error": ["system_crash"]
}
}
}
def plot_model_stats(model_name: str) -> tuple[plt.Figure, str, str]:
"""Draws a pie chart of model's passed, failed, skipped, and error stats."""
model_stats = MODELS[model_name]
# Softer color palette - less pastel, more vibrant
colors = {
'passed': '#4CAF50', # Medium green
'failed': '#E53E3E', # More red
'skipped': '#FFD54F', # Medium yellow
'error': '#8B0000' # Dark red
}
# Convert test lists to counts for chart display
amd_stats = {k: len(v) for k, v in model_stats['amd'].items()}
nvidia_stats = {k: len(v) for k, v in model_stats['nvidia'].items()}
# Filter out categories with 0 values for cleaner visualization
amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}
if not amd_filtered and not nvidia_filtered:
# Handle case where all values are 0 - minimal empty state
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#000000')
ax.set_facecolor('#000000')
ax.text(0.5, 0.5, 'No test results available',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=16, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
return fig, "", ""
# Create figure with two subplots side by side with padding
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 9), facecolor='#000000')
ax1.set_facecolor('#000000')
ax2.set_facecolor('#000000')
def create_pie_chart(ax, device_label, filtered_stats):
if not filtered_stats:
ax.text(0.5, 0.5, 'No test results',
horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=14, color='#888888',
fontfamily='monospace', weight='normal')
ax.set_title(device_label,
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
fontfamily='monospace')
ax.axis('off')
return
chart_colors = [colors[category] for category in filtered_stats.keys()]
# Create minimal pie chart - full pie, no donut effect
wedges, texts, autotexts = ax.pie(
filtered_stats.values(),
labels=[label.lower() for label in filtered_stats.keys()], # Lowercase for minimal look
colors=chart_colors,
autopct=lambda pct: f'{int(pct/100*sum(filtered_stats.values()))}',
startangle=90,
explode=None, # No separation
shadow=False,
wedgeprops=dict(edgecolor='#1a1a1a', linewidth=0.5), # Minimal borders
textprops={'fontsize': 12, 'weight': 'normal', 'color': '#CCCCCC', 'fontfamily': 'monospace'}
)
# Enhanced percentage text styling for better readability
for autotext in autotexts:
autotext.set_color('#000000') # Black text for better contrast
autotext.set_weight('bold')
autotext.set_fontsize(14)
autotext.set_fontfamily('monospace')
# Minimal category labels
for text in texts:
text.set_color('#AAAAAA')
text.set_weight('normal')
text.set_fontsize(13)
text.set_fontfamily('monospace')
# Device label closer to chart and bigger
ax.set_title(device_label,
fontsize=28, weight='bold', pad=2, color='#FFFFFF',
fontfamily='monospace')
# Create both pie charts with device labels
create_pie_chart(ax1, "amd", amd_filtered)
create_pie_chart(ax2, "nvidia", nvidia_filtered)
# Add subtle separation line between charts - stops at device labels level
line_x = 0.5
fig.add_artist(plt.Line2D([line_x, line_x], [0.0, 0.85],
color='#333333', linewidth=1, alpha=0.5,
transform=fig.transFigure))
# Add central shared title for model name
fig.suptitle(f'{model_name.lower()}',
fontsize=32, weight='normal', color='#CCCCCC',
fontfamily='monospace', y=0.95)
# Clean layout with padding and space for central title
plt.tight_layout()
plt.subplots_adjust(top=0.85, wspace=0.4) # Added wspace for padding between charts
# Generate separate failed tests info for AMD and NVIDIA
amd_failed = model_stats['amd']['failed']
nvidia_failed = model_stats['nvidia']['failed']
amd_failed_info = "Fails on AMD:"
amd_failed_info += "\n" + "─" * len(amd_failed_info) + "\n" + ("\n".join(amd_failed) if amd_failed else "None")
nvidia_failed_info = "Fails on NVIDIA:"
nvidia_failed_info += "\n" + "─" * len(nvidia_failed_info) + "\n" + ("\n".join(nvidia_failed) if nvidia_failed else "None")
return fig, amd_failed_info, nvidia_failed_info
def get_model_stats_summary(model_name: str) -> tuple:
"""Get summary stats for a model (total tests, success rate, status indicator)."""
stats = MODELS[model_name]
# Combine AMD and NVIDIA results
total_passed = len(stats['amd']['passed']) + len(stats['nvidia']['passed'])
total_failed = len(stats['amd']['failed']) + len(stats['nvidia']['failed'])
total_skipped = len(stats['amd']['skipped']) + len(stats['nvidia']['skipped'])
total_error = len(stats['amd']['error']) + len(stats['nvidia']['error'])
total = total_passed + total_failed + total_skipped + total_error
success_rate = (total_passed / total * 100) if total > 0 else 0
# Determine status indicator color
if success_rate >= 80:
status_class = "success-high"
elif success_rate >= 50:
status_class = "success-medium"
else:
status_class = "success-low"
return total, success_rate, status_class
# Custom CSS for dark theme
dark_theme_css = """
/* Global dark theme */
.gradio-container {
background-color: #000000 !important;
color: white !important;
}
/* Remove borders from all components */
.gr-box, .gr-form, .gr-panel {
border: none !important;
background-color: #000000 !important;
}
/* Sidebar styling */
.sidebar {
background: linear-gradient(145deg, #111111, #1a1a1a) !important;
border: none !important;
padding: 25px !important;
box-shadow: inset 2px 2px 5px rgba(0, 0, 0, 0.3) !important;
margin: 0 !important;
height: 100vh !important;
position: fixed !important;
left: 0 !important;
top: 0 !important;
width: 300px !important;
}
/* Enhanced model button styling */
.model-button {
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
color: white !important;
border: 2px solid transparent !important;
margin: 2px 0 !important;
border-radius: 5px !important;
padding: 8px 12px !important;
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1) !important;
position: relative !important;
overflow: hidden !important;
box-shadow:
0 4px 15px rgba(0, 0, 0, 0.2),
inset 0 1px 0 rgba(255, 255, 255, 0.1) !important;
font-weight: 600 !important;
font-size: 16px !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
font-family: monospace !important;
}
.model-button:hover {
background: linear-gradient(135deg, #3a3a3a, #2e2e2e) !important;
color: #74b9ff !important;
}
.model-button:active {
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
color: #5a9bd4 !important;
}
/* Model stats badge */
.model-stats {
display: flex !important;
justify-content: space-between !important;
align-items: center !important;
margin-top: 8px !important;
font-size: 12px !important;
opacity: 0.8 !important;
}
.stats-badge {
background: rgba(116, 185, 255, 0.2) !important;
padding: 4px 8px !important;
border-radius: 10px !important;
font-weight: 500 !important;
font-size: 11px !important;
color: #74b9ff !important;
}
.success-indicator {
width: 8px !important;
height: 8px !important;
border-radius: 50% !important;
display: inline-block !important;
margin-right: 6px !important;
}
.success-high { background-color: #4CAF50 !important; }
.success-medium { background-color: #FF9800 !important; }
.success-low { background-color: #F44336 !important; }
/* Regular button styling for non-model buttons */
.gr-button:not(.model-button) {
background-color: #222222 !important;
color: white !important;
border: 1px solid #444444 !important;
margin: 5px 0 !important;
border-radius: 8px !important;
transition: all 0.3s ease !important;
}
.gr-button:not(.model-button):hover {
background-color: #333333 !important;
border-color: #666666 !important;
}
/* Plot container */
.plot-container {
background-color: #000000 !important;
border: none !important;
}
/* Text elements */
h1, h2, h3, p, .markdown {
color: white !important;
}
/* Sidebar header enhancement */
.sidebar h1 {
background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
text-align: center !important;
margin-bottom: 15px !important;
font-size: 28px !important;
font-weight: 700 !important;
font-family: monospace !important;
}
/* Sidebar description text */
.sidebar p {
text-align: center !important;
margin-bottom: 20px !important;
line-height: 1.5 !important;
font-size: 14px !important;
font-family: monospace !important;
}
.sidebar strong {
color: #74b9ff !important;
font-weight: 600 !important;
font-family: monospace !important;
}
.sidebar em {
color: #a29bfe !important;
font-style: normal !important;
opacity: 0.9 !important;
font-family: monospace !important;
}
/* Remove all borders globally */
* {
border-color: transparent !important;
}
/* Main content area */
.main-content {
background-color: #000000 !important;
padding: 20px !important;
margin-left: 300px !important;
}
/* Failed tests display - seamless appearance with fixed height */
.failed-tests textarea {
background-color: #000000 !important;
color: #FFFFFF !important;
font-family: monospace !important;
font-size: 14px !important;
border: none !important;
padding: 10px !important;
outline: none !important;
line-height: 1.4 !important;
height: 200px !important;
max-height: 200px !important;
min-height: 200px !important;
overflow-y: auto !important;
resize: none !important;
scrollbar-width: thin !important;
scrollbar-color: #333333 #000000 !important;
}
/* WebKit scrollbar styling for failed tests */
.failed-tests textarea::-webkit-scrollbar {
width: 8px !important;
}
.failed-tests textarea::-webkit-scrollbar-track {
background: #000000 !important;
}
.failed-tests textarea::-webkit-scrollbar-thumb {
background-color: #333333 !important;
border-radius: 4px !important;
}
.failed-tests textarea::-webkit-scrollbar-thumb:hover {
background-color: #555555 !important;
}
.failed-tests {
background-color: #000000 !important;
height: 220px !important;
max-height: 220px !important;
}
.failed-tests .gr-textbox {
background-color: #000000 !important;
border: none !important;
height: 200px !important;
max-height: 200px !important;
}
/* JavaScript to reset scroll position */
.scroll-reset {
animation: resetScroll 0.1s ease;
}
@keyframes resetScroll {
0% { scroll-behavior: auto; }
100% { scroll-behavior: auto; }
}
"""
# Create the Gradio interface with sidebar and dark theme
with gr.Blocks(title="Model Test Results Dashboard", css=dark_theme_css) as demo:
with gr.Row():
# Sidebar for model selection
with gr.Column(scale=1, elem_classes=["sidebar"]):
gr.Markdown("# πŸ€– AI Models")
gr.Markdown("**Select a model to analyze test results**\n\n*Interactive dashboard with detailed metrics*")
# Model selection buttons in sidebar
model_buttons = []
for model_name in MODELS.keys():
btn = gr.Button(
f"{model_name.lower()}",
variant="secondary",
size="lg",
elem_classes=["model-button"]
)
model_buttons.append(btn)
# Main content area
with gr.Column(scale=4, elem_classes=["main-content"]):
gr.Markdown("# πŸ“ˆ Test Results Dashboard")
# Create the plot output
plot_output = gr.Plot(
label="",
format="png",
elem_classes=["plot-container"]
)
# Create two separate failed tests displays in a row layout
with gr.Row():
with gr.Column(scale=1):
amd_failed_tests_output = gr.Textbox(
value="Fails on AMD:\n────────────\nnetwork_timeout\ngpu_initialization\nmemory_overflow",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
with gr.Column(scale=1):
nvidia_failed_tests_output = gr.Textbox(
value="Fails on NVIDIA:\n────────────────\ndistributed\nmulti_gpu\ndriver_conflict",
lines=8,
max_lines=8,
interactive=False,
container=False,
elem_classes=["failed-tests"]
)
# Set up click handlers for each button
for i, (model_name, button) in enumerate(zip(MODELS.keys(), model_buttons)):
button.click(
fn=lambda name=model_name: plot_model_stats(name),
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
).then(
fn=None,
js="() => { setTimeout(() => { document.querySelectorAll('textarea').forEach(t => { if (t.closest('.failed-tests')) { t.scrollTo({ top: 0, behavior: 'smooth' }); } }); }, 100); }"
)
# Initialize with the first model
demo.load(
fn=lambda: plot_model_stats(list(MODELS.keys())[0]),
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
)
if __name__ == "__main__":
demo.launch()