|
|
from huggingface_hub import HfFileSystem |
|
|
import pandas as pd |
|
|
from utils import logger |
|
|
import threading |
|
|
import traceback |
|
|
import json |
|
|
import re |
|
|
|
|
|
|
|
|
fs = HfFileSystem() |
|
|
|
|
|
IMPORTANT_MODELS = [ |
|
|
"auto", |
|
|
"bert", |
|
|
"gpt2", |
|
|
"t5", |
|
|
"modernbert", |
|
|
"vit", |
|
|
"clip", |
|
|
"detr", |
|
|
"table_transformer", |
|
|
"got_ocr2", |
|
|
"whisper", |
|
|
"wav2vec2", |
|
|
"qwen2_audio", |
|
|
"speech_t5", |
|
|
"csm", |
|
|
"llama", |
|
|
"gemma3", |
|
|
"qwen2", |
|
|
"mistral3", |
|
|
"qwen2_5_vl", |
|
|
"llava", |
|
|
"smolvlm", |
|
|
"internvl", |
|
|
"gemma3n", |
|
|
"qwen2_5_omni", |
|
|
|
|
|
"qwen2_5_omni", |
|
|
] |
|
|
|
|
|
KEYS_TO_KEEP = [ |
|
|
"success_amd", |
|
|
"success_nvidia", |
|
|
"skipped_amd", |
|
|
"skipped_nvidia", |
|
|
"failed_multi_no_amd", |
|
|
"failed_multi_no_nvidia", |
|
|
"failed_single_no_amd", |
|
|
"failed_single_no_nvidia", |
|
|
"failures_amd", |
|
|
"failures_nvidia", |
|
|
"job_link_amd", |
|
|
"job_link_nvidia", |
|
|
] |
|
|
|
|
|
|
|
|
def log_dataframe_link(link: str) -> str: |
|
|
""" |
|
|
Adds the link to the dataset in the logs, modifies it to get a clockable link and then returns the date of the |
|
|
report. |
|
|
""" |
|
|
logger.info(f"Reading df located at {link}") |
|
|
|
|
|
if link.startswith("hf://"): |
|
|
link = "https://huggingface.co/" + link.removeprefix("hf://") |
|
|
|
|
|
pattern = r'transformers_daily_ci(.*?)/(\d{4}-\d{2}-\d{2})' |
|
|
match = re.search(pattern, link) |
|
|
|
|
|
if not match: |
|
|
logger.error("Could not find transformers_daily_ci and.or date in the link") |
|
|
return "9999-99-99" |
|
|
|
|
|
path_between = match.group(1) |
|
|
link = link.replace("transformers_daily_ci" + path_between, "transformers_daily_ci/blob/main") |
|
|
logger.info(f"Link to data source: {link}") |
|
|
|
|
|
return match.group(2) |
|
|
|
|
|
def infer_latest_update_msg(date_df_amd: str, date_df_nvidia: str) -> str: |
|
|
|
|
|
if date_df_amd.startswith("9999") and date_df_nvidia.startswith("9999"): |
|
|
return "could not find last update time" |
|
|
|
|
|
if date_df_amd != date_df_nvidia: |
|
|
logger.warning(f"Different dates found: {date_df_amd} (AMD) vs {date_df_nvidia} (NVIDIA)") |
|
|
|
|
|
try: |
|
|
latest_date = max(date_df_amd, date_df_nvidia) |
|
|
yyyy, mm, dd = latest_date.split("-") |
|
|
return f"last updated {mm}/{dd}/{yyyy}" |
|
|
except Exception as e: |
|
|
logger.error(f"When trying to infer latest date, got error {e}") |
|
|
return "could not find last update time" |
|
|
|
|
|
def read_one_dataframe(json_path: str, device_label: str) -> tuple[pd.DataFrame, str]: |
|
|
df_upload_date = log_dataframe_link(json_path) |
|
|
df = pd.read_json(json_path, orient="index") |
|
|
df.index.name = "model_name" |
|
|
df[f"failed_multi_no_{device_label}"] = df["failures"].apply(lambda x: len(x["multi"]) if "multi" in x else 0) |
|
|
df[f"failed_single_no_{device_label}"] = df["failures"].apply(lambda x: len(x["single"]) if "single" in x else 0) |
|
|
return df, df_upload_date |
|
|
|
|
|
def get_first_working_df(file_list: list[str]) -> str: |
|
|
for file in file_list: |
|
|
job_links = file.rsplit('/', 1)[0] + "/job_links.json" |
|
|
try: |
|
|
links = pd.read_json(f"hf://{job_links}", typ="series") |
|
|
has_one_working_link = any(links.values) |
|
|
except Exception as e: |
|
|
logger.error(f"Could not read job links from {job_links}: {e}") |
|
|
has_one_working_link = False |
|
|
if has_one_working_link: |
|
|
return file |
|
|
logger.warning(f"Skipping {file} as it has no working job links.") |
|
|
raise RuntimeError("Could not find any working dataframe in the provided list.") |
|
|
|
|
|
def get_distant_data() -> tuple[pd.DataFrame, str]: |
|
|
|
|
|
amd_src = "hf://datasets/optimum-amd/transformers_daily_ci/**/runs/**/ci_results_run_models_gpu/model_results.json" |
|
|
files_amd = sorted(fs.glob(amd_src, refresh=True), reverse=True) |
|
|
file_amd = get_first_working_df(files_amd) |
|
|
df_amd, date_df_amd = read_one_dataframe(f"hf://{file_amd}", "amd") |
|
|
|
|
|
|
|
|
nvidia_src = "hf://datasets/hf-internal-testing/transformers_daily_ci/*/ci_results_run_models_gpu/model_results.json" |
|
|
files_nvidia = sorted(fs.glob(nvidia_src, refresh=True), reverse=True) |
|
|
|
|
|
nvidia_path = files_nvidia[0].lstrip('datasets/hf-internal-testing/transformers_daily_ci/') |
|
|
nvidia_path = "https://huggingface.co/datasets/hf-internal-testing/transformers_daily_ci/raw/main/" + nvidia_path |
|
|
df_nvidia, date_df_nvidia = read_one_dataframe(nvidia_path, "nvidia") |
|
|
|
|
|
latest_update_msg = infer_latest_update_msg(date_df_amd, date_df_nvidia) |
|
|
|
|
|
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer") |
|
|
joined = joined[KEYS_TO_KEEP] |
|
|
joined.index = joined.index.str.replace("^models_", "", regex=True) |
|
|
|
|
|
important_models_lower = [model.lower() for model in IMPORTANT_MODELS] |
|
|
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)] |
|
|
|
|
|
for model in IMPORTANT_MODELS: |
|
|
if model not in filtered_joined.index: |
|
|
print(f"[WARNING] Model {model} was missing from index.") |
|
|
return filtered_joined, latest_update_msg |
|
|
|
|
|
|
|
|
def get_sample_data() -> tuple[pd.DataFrame, str]: |
|
|
|
|
|
df_amd, _ = read_one_dataframe("sample_amd.json", "amd") |
|
|
df_nvidia, _ = read_one_dataframe("sample_nvidia.json", "nvidia") |
|
|
|
|
|
joined = df_amd.join(df_nvidia, rsuffix="_nvidia", lsuffix="_amd", how="outer") |
|
|
joined = joined[KEYS_TO_KEEP] |
|
|
joined.index = joined.index.str.replace("^models_", "", regex=True) |
|
|
|
|
|
important_models_lower = [model.lower() for model in IMPORTANT_MODELS] |
|
|
filtered_joined = joined[joined.index.str.lower().isin(important_models_lower)] |
|
|
|
|
|
filtered_joined.index = "sample_" + filtered_joined.index |
|
|
return filtered_joined, "sample data was loaded" |
|
|
|
|
|
def safe_extract(row: pd.DataFrame, key: str) -> int: |
|
|
return int(row.get(key, 0)) if pd.notna(row.get(key, 0)) else 0 |
|
|
|
|
|
def extract_model_data(row: pd.Series) -> tuple[dict[str, int], dict[str, int], int, int, int, int]: |
|
|
"""Extract and process model data from DataFrame row.""" |
|
|
|
|
|
success_nvidia = safe_extract(row, "success_nvidia") |
|
|
success_amd = safe_extract(row, "success_amd") |
|
|
|
|
|
skipped_nvidia = safe_extract(row, "skipped_nvidia") |
|
|
skipped_amd = safe_extract(row, "skipped_amd") |
|
|
|
|
|
failed_multi_amd = safe_extract(row, 'failed_multi_no_amd') |
|
|
failed_multi_nvidia = safe_extract(row, 'failed_multi_no_nvidia') |
|
|
failed_single_amd = safe_extract(row, 'failed_single_no_amd') |
|
|
failed_single_nvidia = safe_extract(row, 'failed_single_no_nvidia') |
|
|
|
|
|
total_failed_amd = failed_multi_amd + failed_single_amd |
|
|
total_failed_nvidia = failed_multi_nvidia + failed_single_nvidia |
|
|
|
|
|
amd_stats = { |
|
|
'passed': success_amd, |
|
|
'failed': total_failed_amd, |
|
|
'skipped': skipped_amd, |
|
|
'error': 0 |
|
|
} |
|
|
nvidia_stats = { |
|
|
'passed': success_nvidia, |
|
|
'failed': total_failed_nvidia, |
|
|
'skipped': skipped_nvidia, |
|
|
'error': 0 |
|
|
} |
|
|
return amd_stats, nvidia_stats, failed_multi_amd, failed_single_amd, failed_multi_nvidia, failed_single_nvidia |
|
|
|
|
|
|
|
|
|
|
|
class CIResults: |
|
|
|
|
|
def __init__(self): |
|
|
self.df = pd.DataFrame() |
|
|
self.available_models = [] |
|
|
self.latest_update_msg = "" |
|
|
|
|
|
def load_data(self) -> None: |
|
|
"""Load data from the data source.""" |
|
|
|
|
|
try: |
|
|
logger.info("Loading distant data...") |
|
|
new_df, latest_update_msg = get_distant_data() |
|
|
self.latest_update_msg = latest_update_msg |
|
|
except Exception as e: |
|
|
error_msg = [ |
|
|
"Loading data failed:", |
|
|
"-" * 120, |
|
|
traceback.format_exc(), |
|
|
"-" * 120, |
|
|
"Falling back on sample data." |
|
|
] |
|
|
logger.error("\n".join(error_msg)) |
|
|
new_df, latest_update_msg = get_sample_data() |
|
|
self.latest_update_msg = latest_update_msg |
|
|
|
|
|
self.df = new_df |
|
|
self.available_models = new_df.index.tolist() |
|
|
|
|
|
logger.info(f"Data loaded successfully: {len(self.available_models)} models") |
|
|
logger.info(f"Models: {self.available_models[:5]}{'...' if len(self.available_models) > 5 else ''}") |
|
|
logger.info(f"Latest update message: {self.latest_update_msg}") |
|
|
|
|
|
msg = {} |
|
|
for model in self.available_models[:3]: |
|
|
msg[model] = {} |
|
|
for col in self.df.columns: |
|
|
value = self.df.loc[model, col] |
|
|
if not isinstance(value, int): |
|
|
value = str(value) |
|
|
if len(value) > 10: |
|
|
value = value[:10] + "..." |
|
|
msg[model][col] = value |
|
|
logger.info(json.dumps(msg, indent=4)) |
|
|
|
|
|
def schedule_data_reload(self): |
|
|
"""Schedule the next data reload.""" |
|
|
def reload_data(): |
|
|
self.load_data() |
|
|
|
|
|
timer = threading.Timer(900.0, reload_data) |
|
|
timer.daemon = True |
|
|
timer.start() |
|
|
logger.info("Next data reload scheduled in 15 minutes") |
|
|
|
|
|
|
|
|
timer = threading.Timer(900.0, reload_data) |
|
|
timer.daemon = True |
|
|
timer.start() |
|
|
logger.info("Data auto-reload scheduled every 15 minutes") |
|
|
|