Remove unused files to reduce code size
Browse files- Delete logos/amd_logo.png and logos/nvidia_logo.png (not needed with text labels)
- Delete time_series.py (316 lines) - unused matplotlib version
- Keep time_series_gradio.py which uses Plotly and is actually used
- Total reduction: ~340 lines of unused code
- logos/amd_logo.png +0 -0
- logos/nvidia_logo.png +0 -0
- time_series.py +0 -316
logos/amd_logo.png
DELETED
|
Binary file (61.7 kB)
|
|
|
logos/nvidia_logo.png
DELETED
|
Binary file (94.6 kB)
|
|
|
time_series.py
DELETED
|
@@ -1,316 +0,0 @@
|
|
| 1 |
-
import matplotlib.pyplot as plt
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import numpy as np
|
| 4 |
-
from datetime import datetime
|
| 5 |
-
from data import extract_model_data
|
| 6 |
-
|
| 7 |
-
COLORS = {
|
| 8 |
-
'passed': '#4CAF50',
|
| 9 |
-
'failed': '#E53E3E',
|
| 10 |
-
'skipped': '#FFD54F',
|
| 11 |
-
'error': '#8B0000',
|
| 12 |
-
'amd': '#ED1C24',
|
| 13 |
-
'nvidia': '#76B900'
|
| 14 |
-
}
|
| 15 |
-
|
| 16 |
-
FIGURE_WIDTH = 20
|
| 17 |
-
FIGURE_HEIGHT = 12
|
| 18 |
-
|
| 19 |
-
BLACK = '#000000'
|
| 20 |
-
LABEL_COLOR = '#CCCCCC'
|
| 21 |
-
TITLE_COLOR = '#FFFFFF'
|
| 22 |
-
GRID_COLOR = '#333333'
|
| 23 |
-
|
| 24 |
-
TITLE_FONT_SIZE = 24
|
| 25 |
-
LABEL_FONT_SIZE = 14
|
| 26 |
-
LEGEND_FONT_SIZE = 12
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
def create_time_series_summary(historical_df: pd.DataFrame) -> plt.Figure:
|
| 30 |
-
if historical_df.empty or 'date' not in historical_df.columns:
|
| 31 |
-
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 32 |
-
ax.set_facecolor(BLACK)
|
| 33 |
-
ax.text(0.5, 0.5, 'No historical data available',
|
| 34 |
-
horizontalalignment='center', verticalalignment='center',
|
| 35 |
-
transform=ax.transAxes, fontsize=20, color='#888888',
|
| 36 |
-
fontfamily='monospace', weight='normal')
|
| 37 |
-
ax.axis('off')
|
| 38 |
-
return fig
|
| 39 |
-
|
| 40 |
-
historical_df['date_dt'] = pd.to_datetime(historical_df['date'])
|
| 41 |
-
historical_df = historical_df.sort_values('date_dt')
|
| 42 |
-
|
| 43 |
-
daily_stats = []
|
| 44 |
-
dates = []
|
| 45 |
-
|
| 46 |
-
for date in historical_df['date_dt'].unique():
|
| 47 |
-
date_data = historical_df[historical_df['date_dt'] == date]
|
| 48 |
-
|
| 49 |
-
total_amd_passed = total_amd_failed = total_amd_skipped = 0
|
| 50 |
-
total_nvidia_passed = total_nvidia_failed = total_nvidia_skipped = 0
|
| 51 |
-
|
| 52 |
-
for _, row in date_data.iterrows():
|
| 53 |
-
amd_stats, nvidia_stats = extract_model_data(row)[:2]
|
| 54 |
-
|
| 55 |
-
total_amd_passed += amd_stats['passed']
|
| 56 |
-
total_amd_failed += amd_stats['failed']
|
| 57 |
-
total_amd_skipped += amd_stats['skipped']
|
| 58 |
-
total_nvidia_passed += nvidia_stats['passed']
|
| 59 |
-
total_nvidia_failed += nvidia_stats['failed']
|
| 60 |
-
total_nvidia_skipped += nvidia_stats['skipped']
|
| 61 |
-
|
| 62 |
-
amd_total = total_amd_passed + total_amd_failed
|
| 63 |
-
nvidia_total = total_nvidia_passed + total_nvidia_failed
|
| 64 |
-
|
| 65 |
-
amd_failure_rate = (total_amd_failed / amd_total * 100) if amd_total > 0 else 0
|
| 66 |
-
nvidia_failure_rate = (total_nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
|
| 67 |
-
|
| 68 |
-
daily_stats.append({
|
| 69 |
-
'amd_failure_rate': amd_failure_rate,
|
| 70 |
-
'nvidia_failure_rate': nvidia_failure_rate,
|
| 71 |
-
'amd_passed': total_amd_passed,
|
| 72 |
-
'amd_failed': total_amd_failed,
|
| 73 |
-
'amd_skipped': total_amd_skipped,
|
| 74 |
-
'nvidia_passed': total_nvidia_passed,
|
| 75 |
-
'nvidia_failed': total_nvidia_failed,
|
| 76 |
-
'nvidia_skipped': total_nvidia_skipped
|
| 77 |
-
})
|
| 78 |
-
dates.append(date)
|
| 79 |
-
|
| 80 |
-
fig = plt.figure(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT + 4), facecolor=BLACK)
|
| 81 |
-
gs = fig.add_gridspec(3, 2, height_ratios=[1.2, 1, 1], width_ratios=[2, 1],
|
| 82 |
-
hspace=0.3, wspace=0.25)
|
| 83 |
-
|
| 84 |
-
ax1 = fig.add_subplot(gs[0, :])
|
| 85 |
-
ax2 = fig.add_subplot(gs[1, 0])
|
| 86 |
-
ax3 = fig.add_subplot(gs[2, 0])
|
| 87 |
-
ax4 = fig.add_subplot(gs[1:, 1])
|
| 88 |
-
|
| 89 |
-
for ax in [ax1, ax2, ax3, ax4]:
|
| 90 |
-
ax.set_facecolor(BLACK)
|
| 91 |
-
|
| 92 |
-
dates_array = np.array(dates)
|
| 93 |
-
amd_rates = [stat['amd_failure_rate'] for stat in daily_stats]
|
| 94 |
-
nvidia_rates = [stat['nvidia_failure_rate'] for stat in daily_stats]
|
| 95 |
-
|
| 96 |
-
ax1.fill_between(dates_array, 0, amd_rates, color=COLORS['amd'], alpha=0.15)
|
| 97 |
-
ax1.fill_between(dates_array, 0, nvidia_rates, color=COLORS['nvidia'], alpha=0.15)
|
| 98 |
-
ax1.plot(dates_array, amd_rates, color=COLORS['amd'], linewidth=3,
|
| 99 |
-
label='AMD', marker='o', markersize=7, markeredgewidth=2, markeredgecolor=BLACK)
|
| 100 |
-
ax1.plot(dates_array, nvidia_rates, color=COLORS['nvidia'], linewidth=3,
|
| 101 |
-
label='NVIDIA', marker='s', markersize=7, markeredgewidth=2, markeredgecolor=BLACK)
|
| 102 |
-
|
| 103 |
-
if len(amd_rates) > 2:
|
| 104 |
-
z_amd = np.polyfit(range(len(amd_rates)), amd_rates, 1)
|
| 105 |
-
p_amd = np.poly1d(z_amd)
|
| 106 |
-
ax1.plot(dates_array, p_amd(range(len(amd_rates))),
|
| 107 |
-
color=COLORS['amd'], linestyle='--', alpha=0.5, linewidth=2)
|
| 108 |
-
|
| 109 |
-
z_nvidia = np.polyfit(range(len(nvidia_rates)), nvidia_rates, 1)
|
| 110 |
-
p_nvidia = np.poly1d(z_nvidia)
|
| 111 |
-
ax1.plot(dates_array, p_nvidia(range(len(nvidia_rates))),
|
| 112 |
-
color=COLORS['nvidia'], linestyle='--', alpha=0.5, linewidth=2)
|
| 113 |
-
|
| 114 |
-
ax1.set_title('Overall Failure Rates Over Time', fontsize=TITLE_FONT_SIZE,
|
| 115 |
-
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
|
| 116 |
-
ax1.set_ylabel('Failure Rate (%)', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 117 |
-
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 118 |
-
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper right', frameon=False,
|
| 119 |
-
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 120 |
-
ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
|
| 121 |
-
|
| 122 |
-
amd_passed = [stat['amd_passed'] for stat in daily_stats]
|
| 123 |
-
amd_failed = [stat['amd_failed'] for stat in daily_stats]
|
| 124 |
-
amd_skipped = [stat['amd_skipped'] for stat in daily_stats]
|
| 125 |
-
|
| 126 |
-
ax2.stackplot(dates_array, amd_passed, amd_failed, amd_skipped,
|
| 127 |
-
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 128 |
-
alpha=0.8, labels=['Passed', 'Failed', 'Skipped'])
|
| 129 |
-
|
| 130 |
-
ax2.set_title('AMD Test Results', fontsize=TITLE_FONT_SIZE - 2,
|
| 131 |
-
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=15)
|
| 132 |
-
ax2.set_ylabel('Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 133 |
-
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 134 |
-
ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE - 1, axis='x', rotation=45)
|
| 135 |
-
|
| 136 |
-
nvidia_passed = [stat['nvidia_passed'] for stat in daily_stats]
|
| 137 |
-
nvidia_failed = [stat['nvidia_failed'] for stat in daily_stats]
|
| 138 |
-
nvidia_skipped = [stat['nvidia_skipped'] for stat in daily_stats]
|
| 139 |
-
|
| 140 |
-
ax3.stackplot(dates_array, nvidia_passed, nvidia_failed, nvidia_skipped,
|
| 141 |
-
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 142 |
-
alpha=0.8, labels=['Passed', 'Failed', 'Skipped'])
|
| 143 |
-
|
| 144 |
-
ax3.set_title('NVIDIA Test Results', fontsize=TITLE_FONT_SIZE - 2,
|
| 145 |
-
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=15)
|
| 146 |
-
ax3.set_ylabel('Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 147 |
-
ax3.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 148 |
-
ax3.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 149 |
-
ax3.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE - 1, axis='x', rotation=45)
|
| 150 |
-
|
| 151 |
-
latest = daily_stats[-1]
|
| 152 |
-
metrics = [
|
| 153 |
-
('Latest AMD Failure Rate', f"{latest['amd_failure_rate']:.1f}%", COLORS['amd']),
|
| 154 |
-
('Latest NVIDIA Failure Rate', f"{latest['nvidia_failure_rate']:.1f}%", COLORS['nvidia']),
|
| 155 |
-
('', '', None),
|
| 156 |
-
('Total AMD Tests', str(latest['amd_passed'] + latest['amd_failed'] + latest['amd_skipped']), '#888888'),
|
| 157 |
-
('Total NVIDIA Tests', str(latest['nvidia_passed'] + latest['nvidia_failed'] + latest['nvidia_skipped']), '#888888'),
|
| 158 |
-
]
|
| 159 |
-
|
| 160 |
-
ax4.axis('off')
|
| 161 |
-
y_pos = 0.9
|
| 162 |
-
ax4.text(0.5, 0.95, 'SUMMARY', ha='center', va='top', fontsize=TITLE_FONT_SIZE - 2,
|
| 163 |
-
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold',
|
| 164 |
-
transform=ax4.transAxes)
|
| 165 |
-
|
| 166 |
-
for label, value, color in metrics:
|
| 167 |
-
if label:
|
| 168 |
-
ax4.text(0.1, y_pos, label, ha='left', va='center', fontsize=LABEL_FONT_SIZE,
|
| 169 |
-
color=LABEL_COLOR, fontfamily='monospace', transform=ax4.transAxes)
|
| 170 |
-
ax4.text(0.9, y_pos, value, ha='right', va='center', fontsize=LABEL_FONT_SIZE + 2,
|
| 171 |
-
color=color or LABEL_COLOR, fontfamily='monospace', fontweight='bold',
|
| 172 |
-
transform=ax4.transAxes)
|
| 173 |
-
y_pos -= 0.15
|
| 174 |
-
|
| 175 |
-
handles = [plt.Rectangle((0,0),1,1, fc=COLORS['passed'], alpha=0.8),
|
| 176 |
-
plt.Rectangle((0,0),1,1, fc=COLORS['failed'], alpha=0.8),
|
| 177 |
-
plt.Rectangle((0,0),1,1, fc=COLORS['skipped'], alpha=0.8)]
|
| 178 |
-
ax4.legend(handles, ['Passed', 'Failed', 'Skipped'],
|
| 179 |
-
loc='lower center', fontsize=LEGEND_FONT_SIZE,
|
| 180 |
-
frameon=False, labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 181 |
-
|
| 182 |
-
plt.close('all')
|
| 183 |
-
return fig
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
def create_model_time_series(historical_df: pd.DataFrame, model_name: str) -> plt.Figure:
|
| 187 |
-
if historical_df.empty or 'date' not in historical_df.columns:
|
| 188 |
-
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 189 |
-
ax.set_facecolor(BLACK)
|
| 190 |
-
ax.text(0.5, 0.5, f'No historical data available for {model_name}',
|
| 191 |
-
horizontalalignment='center', verticalalignment='center',
|
| 192 |
-
transform=ax.transAxes, fontsize=20, color='#888888',
|
| 193 |
-
fontfamily='monospace', weight='normal')
|
| 194 |
-
ax.axis('off')
|
| 195 |
-
return fig
|
| 196 |
-
|
| 197 |
-
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 198 |
-
|
| 199 |
-
if model_data.empty:
|
| 200 |
-
fig, ax = plt.subplots(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 201 |
-
ax.set_facecolor(BLACK)
|
| 202 |
-
ax.text(0.5, 0.5, f'No data found for model: {model_name}',
|
| 203 |
-
horizontalalignment='center', verticalalignment='center',
|
| 204 |
-
transform=ax.transAxes, fontsize=20, color='#888888',
|
| 205 |
-
fontfamily='monospace', weight='normal')
|
| 206 |
-
ax.axis('off')
|
| 207 |
-
return fig
|
| 208 |
-
|
| 209 |
-
model_data = model_data.copy()
|
| 210 |
-
model_data['date_dt'] = pd.to_datetime(model_data['date'])
|
| 211 |
-
model_data = model_data.sort_values('date_dt')
|
| 212 |
-
|
| 213 |
-
dates = model_data['date_dt'].values
|
| 214 |
-
amd_stats_list = []
|
| 215 |
-
nvidia_stats_list = []
|
| 216 |
-
|
| 217 |
-
for _, row in model_data.iterrows():
|
| 218 |
-
amd_stats, nvidia_stats = extract_model_data(row)[:2]
|
| 219 |
-
amd_stats_list.append(amd_stats)
|
| 220 |
-
nvidia_stats_list.append(nvidia_stats)
|
| 221 |
-
|
| 222 |
-
fig = plt.figure(figsize=(FIGURE_WIDTH, FIGURE_HEIGHT), facecolor=BLACK)
|
| 223 |
-
gs = fig.add_gridspec(2, 2, height_ratios=[1, 1], width_ratios=[3, 1],
|
| 224 |
-
hspace=0.3, wspace=0.2)
|
| 225 |
-
|
| 226 |
-
ax1 = fig.add_subplot(gs[0, 0])
|
| 227 |
-
ax2 = fig.add_subplot(gs[1, 0])
|
| 228 |
-
ax3 = fig.add_subplot(gs[:, 1])
|
| 229 |
-
|
| 230 |
-
for ax in [ax1, ax2, ax3]:
|
| 231 |
-
ax.set_facecolor(BLACK)
|
| 232 |
-
|
| 233 |
-
amd_passed = [stats['passed'] for stats in amd_stats_list]
|
| 234 |
-
amd_failed = [stats['failed'] for stats in amd_stats_list]
|
| 235 |
-
amd_skipped = [stats['skipped'] for stats in amd_stats_list]
|
| 236 |
-
|
| 237 |
-
ax1.stackplot(dates, amd_passed, amd_failed, amd_skipped,
|
| 238 |
-
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 239 |
-
alpha=0.7, labels=['Passed', 'Failed', 'Skipped'])
|
| 240 |
-
|
| 241 |
-
ax1.plot(dates, amd_failed, color=COLORS['failed'], linewidth=2.5,
|
| 242 |
-
marker='o', markersize=7, markeredgewidth=2, markeredgecolor=BLACK,
|
| 243 |
-
linestyle='-', label='_nolegend_')
|
| 244 |
-
|
| 245 |
-
ax1.set_title(f'{model_name.upper()} - AMD Results', fontsize=TITLE_FONT_SIZE,
|
| 246 |
-
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
|
| 247 |
-
ax1.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 248 |
-
ax1.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 249 |
-
ax1.legend(fontsize=LEGEND_FONT_SIZE, loc='upper left', frameon=False,
|
| 250 |
-
labelcolor=LABEL_COLOR, prop={'family': 'monospace'})
|
| 251 |
-
ax1.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
|
| 252 |
-
|
| 253 |
-
nvidia_passed = [stats['passed'] for stats in nvidia_stats_list]
|
| 254 |
-
nvidia_failed = [stats['failed'] for stats in nvidia_stats_list]
|
| 255 |
-
nvidia_skipped = [stats['skipped'] for stats in nvidia_stats_list]
|
| 256 |
-
|
| 257 |
-
ax2.stackplot(dates, nvidia_passed, nvidia_failed, nvidia_skipped,
|
| 258 |
-
colors=[COLORS['passed'], COLORS['failed'], COLORS['skipped']],
|
| 259 |
-
alpha=0.7, labels=['Passed', 'Failed', 'Skipped'])
|
| 260 |
-
|
| 261 |
-
ax2.plot(dates, nvidia_failed, color=COLORS['failed'], linewidth=2.5,
|
| 262 |
-
marker='s', markersize=7, markeredgewidth=2, markeredgecolor=BLACK,
|
| 263 |
-
linestyle='-', label='_nolegend_')
|
| 264 |
-
|
| 265 |
-
ax2.set_title(f'{model_name.upper()} - NVIDIA Results', fontsize=TITLE_FONT_SIZE,
|
| 266 |
-
color=TITLE_COLOR, fontfamily='monospace', fontweight='bold', pad=20)
|
| 267 |
-
ax2.set_ylabel('Number of Tests', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 268 |
-
ax2.set_xlabel('Date', fontsize=LABEL_FONT_SIZE, color=LABEL_COLOR, fontfamily='monospace')
|
| 269 |
-
ax2.grid(True, color=GRID_COLOR, alpha=0.3, linestyle='-', linewidth=0.5)
|
| 270 |
-
ax2.tick_params(colors=LABEL_COLOR, labelsize=LABEL_FONT_SIZE, axis='x', rotation=45)
|
| 271 |
-
|
| 272 |
-
ax3.axis('off')
|
| 273 |
-
latest_amd = amd_stats_list[-1]
|
| 274 |
-
latest_nvidia = nvidia_stats_list[-1]
|
| 275 |
-
|
| 276 |
-
amd_total = latest_amd['passed'] + latest_amd['failed']
|
| 277 |
-
nvidia_total = latest_nvidia['passed'] + latest_nvidia['failed']
|
| 278 |
-
amd_fail_rate = (latest_amd['failed'] / amd_total * 100) if amd_total > 0 else 0
|
| 279 |
-
nvidia_fail_rate = (latest_nvidia['failed'] / nvidia_total * 100) if nvidia_total > 0 else 0
|
| 280 |
-
|
| 281 |
-
ax3.text(0.5, 0.95, 'LATEST RESULTS', ha='center', va='top',
|
| 282 |
-
fontsize=TITLE_FONT_SIZE - 4, color=TITLE_COLOR, fontfamily='monospace',
|
| 283 |
-
fontweight='bold', transform=ax3.transAxes)
|
| 284 |
-
|
| 285 |
-
y = 0.80
|
| 286 |
-
sections = [
|
| 287 |
-
('AMD', [
|
| 288 |
-
('Pass Rate', f"{(latest_amd['passed']/amd_total*100) if amd_total > 0 else 0:.1f}%", COLORS['passed']),
|
| 289 |
-
('Fail Rate', f"{amd_fail_rate:.1f}%", COLORS['failed']),
|
| 290 |
-
('Total', str(latest_amd['passed'] + latest_amd['failed'] + latest_amd['skipped']), '#888888'),
|
| 291 |
-
]),
|
| 292 |
-
('NVIDIA', [
|
| 293 |
-
('Pass Rate', f"{(latest_nvidia['passed']/nvidia_total*100) if nvidia_total > 0 else 0:.1f}%", COLORS['passed']),
|
| 294 |
-
('Fail Rate', f"{nvidia_fail_rate:.1f}%", COLORS['failed']),
|
| 295 |
-
('Total', str(latest_nvidia['passed'] + latest_nvidia['failed'] + latest_nvidia['skipped']), '#888888'),
|
| 296 |
-
])
|
| 297 |
-
]
|
| 298 |
-
|
| 299 |
-
for section_name, metrics in sections:
|
| 300 |
-
ax3.text(0.5, y, section_name, ha='center', va='center',
|
| 301 |
-
fontsize=LABEL_FONT_SIZE + 2, color=TITLE_COLOR,
|
| 302 |
-
fontfamily='monospace', fontweight='bold', transform=ax3.transAxes)
|
| 303 |
-
y -= 0.08
|
| 304 |
-
|
| 305 |
-
for label, value, color in metrics:
|
| 306 |
-
ax3.text(0.15, y, label, ha='left', va='center',
|
| 307 |
-
fontsize=LABEL_FONT_SIZE - 1, color=LABEL_COLOR,
|
| 308 |
-
fontfamily='monospace', transform=ax3.transAxes)
|
| 309 |
-
ax3.text(0.85, y, value, ha='right', va='center',
|
| 310 |
-
fontsize=LABEL_FONT_SIZE, color=color,
|
| 311 |
-
fontfamily='monospace', fontweight='bold', transform=ax3.transAxes)
|
| 312 |
-
y -= 0.07
|
| 313 |
-
y -= 0.05
|
| 314 |
-
|
| 315 |
-
plt.close('all')
|
| 316 |
-
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|