Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -33,13 +33,17 @@ def end_session(req: gr.Request):
|
|
| 33 |
|
| 34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 35 |
"""
|
| 36 |
-
Preprocess the input image.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
Args:
|
| 39 |
-
image (Image.Image): The input image
|
| 40 |
|
| 41 |
Returns:
|
| 42 |
-
Image.Image: The preprocessed image
|
| 43 |
"""
|
| 44 |
processed_image = pipeline.preprocess_image(image)
|
| 45 |
return processed_image
|
|
@@ -47,13 +51,16 @@ def preprocess_image(image: Image.Image) -> Image.Image:
|
|
| 47 |
|
| 48 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 49 |
"""
|
| 50 |
-
Preprocess a list of input images.
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
Args:
|
| 53 |
-
images (List[Tuple[Image.Image, str]]): The input images
|
| 54 |
|
| 55 |
Returns:
|
| 56 |
-
List[Image.Image]: The preprocessed images
|
| 57 |
"""
|
| 58 |
images = [image[0] for image in images]
|
| 59 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
|
@@ -102,13 +109,23 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
| 102 |
|
| 103 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 104 |
"""
|
| 105 |
-
Get the random seed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
"""
|
| 107 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 108 |
|
| 109 |
|
| 110 |
-
@spaces.GPU
|
| 111 |
-
def
|
| 112 |
image: Image.Image,
|
| 113 |
multiimages: List[Tuple[Image.Image, str]],
|
| 114 |
is_multiimage: bool,
|
|
@@ -118,10 +135,12 @@ def image_to_3d(
|
|
| 118 |
slat_guidance_strength: float,
|
| 119 |
slat_sampling_steps: int,
|
| 120 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
|
|
|
|
|
|
| 121 |
req: gr.Request,
|
| 122 |
-
) -> Tuple[dict, str]:
|
| 123 |
"""
|
| 124 |
-
Convert an image to a 3D model.
|
| 125 |
|
| 126 |
Args:
|
| 127 |
image (Image.Image): The input image.
|
|
@@ -133,12 +152,18 @@ def image_to_3d(
|
|
| 133 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 134 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 135 |
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
|
|
|
|
|
|
| 136 |
|
| 137 |
Returns:
|
| 138 |
dict: The information of the generated 3D model.
|
| 139 |
str: The path to the video of the 3D model.
|
|
|
|
|
|
|
| 140 |
"""
|
| 141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
|
|
|
|
|
|
| 142 |
if not is_multiimage:
|
| 143 |
outputs = pipeline.run(
|
| 144 |
image,
|
|
@@ -170,53 +195,43 @@ def image_to_3d(
|
|
| 170 |
},
|
| 171 |
mode=multiimage_algo,
|
| 172 |
)
|
|
|
|
|
|
|
| 173 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 174 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 175 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 176 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 177 |
imageio.mimsave(video_path, video, fps=15)
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
@spaces.GPU(duration=90)
|
| 184 |
-
def extract_glb(
|
| 185 |
-
state: dict,
|
| 186 |
-
mesh_simplify: float,
|
| 187 |
-
texture_size: int,
|
| 188 |
-
req: gr.Request,
|
| 189 |
-
) -> Tuple[str, str]:
|
| 190 |
-
"""
|
| 191 |
-
Extract a GLB file from the 3D model.
|
| 192 |
-
|
| 193 |
-
Args:
|
| 194 |
-
state (dict): The state of the generated 3D model.
|
| 195 |
-
mesh_simplify (float): The mesh simplification factor.
|
| 196 |
-
texture_size (int): The texture resolution.
|
| 197 |
-
|
| 198 |
-
Returns:
|
| 199 |
-
str: The path to the extracted GLB file.
|
| 200 |
-
"""
|
| 201 |
-
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 202 |
-
gs, mesh = unpack_state(state)
|
| 203 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 204 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 205 |
glb.export(glb_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
torch.cuda.empty_cache()
|
| 207 |
-
return glb_path, glb_path
|
| 208 |
|
| 209 |
|
| 210 |
@spaces.GPU
|
| 211 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 212 |
"""
|
| 213 |
-
Extract a Gaussian file from the 3D model.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
Args:
|
| 216 |
-
state (dict): The state of the generated 3D model
|
|
|
|
| 217 |
|
| 218 |
Returns:
|
| 219 |
-
str:
|
| 220 |
"""
|
| 221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 222 |
gs, _ = unpack_state(state)
|
|
@@ -242,7 +257,17 @@ def prepare_multi_example() -> List[Image.Image]:
|
|
| 242 |
|
| 243 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 244 |
"""
|
| 245 |
-
Split
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
"""
|
| 247 |
image = np.array(image)
|
| 248 |
alpha = image[..., 3]
|
|
@@ -258,8 +283,9 @@ def split_image(image: Image.Image) -> List[Image.Image]:
|
|
| 258 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 259 |
gr.Markdown("""
|
| 260 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 261 |
-
* Upload an image and click "Generate" to create a 3D asset
|
| 262 |
-
* If you
|
|
|
|
| 263 |
|
| 264 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
| 265 |
""")
|
|
@@ -289,16 +315,13 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 289 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 290 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 291 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
| 292 |
-
|
| 293 |
-
generate_btn = gr.Button("Generate")
|
| 294 |
|
| 295 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 296 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 297 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
| 302 |
gr.Markdown("""
|
| 303 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 304 |
""")
|
|
@@ -366,26 +389,17 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 366 |
inputs=[randomize_seed, seed],
|
| 367 |
outputs=[seed],
|
| 368 |
).then(
|
| 369 |
-
|
| 370 |
-
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
| 371 |
-
outputs=[output_buf, video_output],
|
| 372 |
).then(
|
| 373 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 374 |
-
outputs=[
|
| 375 |
)
|
| 376 |
|
| 377 |
video_output.clear(
|
| 378 |
-
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 379 |
-
outputs=[
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
extract_glb_btn.click(
|
| 383 |
-
extract_glb,
|
| 384 |
-
inputs=[output_buf, mesh_simplify, texture_size],
|
| 385 |
-
outputs=[model_output, download_glb],
|
| 386 |
-
).then(
|
| 387 |
-
lambda: gr.Button(interactive=True),
|
| 388 |
-
outputs=[download_glb],
|
| 389 |
)
|
| 390 |
|
| 391 |
extract_gs_btn.click(
|
|
@@ -398,8 +412,8 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
| 398 |
)
|
| 399 |
|
| 400 |
model_output.clear(
|
| 401 |
-
lambda: gr.Button(interactive=False),
|
| 402 |
-
outputs=[download_glb],
|
| 403 |
)
|
| 404 |
|
| 405 |
|
|
@@ -411,4 +425,4 @@ if __name__ == "__main__":
|
|
| 411 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
| 412 |
except:
|
| 413 |
pass
|
| 414 |
-
demo.launch()
|
|
|
|
| 33 |
|
| 34 |
def preprocess_image(image: Image.Image) -> Image.Image:
|
| 35 |
"""
|
| 36 |
+
Preprocess the input image for 3D generation.
|
| 37 |
+
|
| 38 |
+
This function is called when a user uploads an image or selects an example.
|
| 39 |
+
It applies background removal and other preprocessing steps necessary for
|
| 40 |
+
optimal 3D model generation.
|
| 41 |
|
| 42 |
Args:
|
| 43 |
+
image (Image.Image): The input image from the user
|
| 44 |
|
| 45 |
Returns:
|
| 46 |
+
Image.Image: The preprocessed image ready for 3D generation
|
| 47 |
"""
|
| 48 |
processed_image = pipeline.preprocess_image(image)
|
| 49 |
return processed_image
|
|
|
|
| 51 |
|
| 52 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
| 53 |
"""
|
| 54 |
+
Preprocess a list of input images for multi-image 3D generation.
|
| 55 |
+
|
| 56 |
+
This function is called when users upload multiple images in the gallery.
|
| 57 |
+
It processes each image to prepare them for the multi-image 3D generation pipeline.
|
| 58 |
|
| 59 |
Args:
|
| 60 |
+
images (List[Tuple[Image.Image, str]]): The input images from the gallery
|
| 61 |
|
| 62 |
Returns:
|
| 63 |
+
List[Image.Image]: The preprocessed images ready for 3D generation
|
| 64 |
"""
|
| 65 |
images = [image[0] for image in images]
|
| 66 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
|
|
|
| 109 |
|
| 110 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
| 111 |
"""
|
| 112 |
+
Get the random seed for generation.
|
| 113 |
+
|
| 114 |
+
This function is called by the generate button to determine whether to use
|
| 115 |
+
a random seed or the user-specified seed value.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
randomize_seed (bool): Whether to generate a random seed
|
| 119 |
+
seed (int): The user-specified seed value
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
int: The seed to use for generation
|
| 123 |
"""
|
| 124 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
| 125 |
|
| 126 |
|
| 127 |
+
@spaces.GPU(duration=120)
|
| 128 |
+
def generate_and_extract_glb(
|
| 129 |
image: Image.Image,
|
| 130 |
multiimages: List[Tuple[Image.Image, str]],
|
| 131 |
is_multiimage: bool,
|
|
|
|
| 135 |
slat_guidance_strength: float,
|
| 136 |
slat_sampling_steps: int,
|
| 137 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
| 138 |
+
mesh_simplify: float,
|
| 139 |
+
texture_size: int,
|
| 140 |
req: gr.Request,
|
| 141 |
+
) -> Tuple[dict, str, str, str]:
|
| 142 |
"""
|
| 143 |
+
Convert an image to a 3D model and extract GLB file.
|
| 144 |
|
| 145 |
Args:
|
| 146 |
image (Image.Image): The input image.
|
|
|
|
| 152 |
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
| 153 |
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
| 154 |
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
| 155 |
+
mesh_simplify (float): The mesh simplification factor.
|
| 156 |
+
texture_size (int): The texture resolution.
|
| 157 |
|
| 158 |
Returns:
|
| 159 |
dict: The information of the generated 3D model.
|
| 160 |
str: The path to the video of the 3D model.
|
| 161 |
+
str: The path to the extracted GLB file.
|
| 162 |
+
str: The path to the extracted GLB file (for download).
|
| 163 |
"""
|
| 164 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 165 |
+
|
| 166 |
+
# Generate 3D model
|
| 167 |
if not is_multiimage:
|
| 168 |
outputs = pipeline.run(
|
| 169 |
image,
|
|
|
|
| 195 |
},
|
| 196 |
mode=multiimage_algo,
|
| 197 |
)
|
| 198 |
+
|
| 199 |
+
# Render video
|
| 200 |
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
|
| 201 |
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
|
| 202 |
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
|
| 203 |
video_path = os.path.join(user_dir, 'sample.mp4')
|
| 204 |
imageio.mimsave(video_path, video, fps=15)
|
| 205 |
+
|
| 206 |
+
# Extract GLB
|
| 207 |
+
gs = outputs['gaussian'][0]
|
| 208 |
+
mesh = outputs['mesh'][0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
| 210 |
glb_path = os.path.join(user_dir, 'sample.glb')
|
| 211 |
glb.export(glb_path)
|
| 212 |
+
|
| 213 |
+
# Pack state for optional Gaussian extraction
|
| 214 |
+
state = pack_state(gs, mesh)
|
| 215 |
+
|
| 216 |
torch.cuda.empty_cache()
|
| 217 |
+
return state, video_path, glb_path, glb_path
|
| 218 |
|
| 219 |
|
| 220 |
@spaces.GPU
|
| 221 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
| 222 |
"""
|
| 223 |
+
Extract a Gaussian splatting file from the generated 3D model.
|
| 224 |
+
|
| 225 |
+
This function is called when the user clicks "Extract Gaussian" button.
|
| 226 |
+
It converts the 3D model state into a .ply file format containing
|
| 227 |
+
Gaussian splatting data for advanced 3D applications.
|
| 228 |
|
| 229 |
Args:
|
| 230 |
+
state (dict): The state of the generated 3D model containing Gaussian data
|
| 231 |
+
req (gr.Request): Gradio request object for session management
|
| 232 |
|
| 233 |
Returns:
|
| 234 |
+
Tuple[str, str]: Paths to the extracted Gaussian file (for display and download)
|
| 235 |
"""
|
| 236 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
| 237 |
gs, _ = unpack_state(state)
|
|
|
|
| 257 |
|
| 258 |
def split_image(image: Image.Image) -> List[Image.Image]:
|
| 259 |
"""
|
| 260 |
+
Split a multi-view image into separate view images.
|
| 261 |
+
|
| 262 |
+
This function is called when users select multi-image examples that contain
|
| 263 |
+
multiple views in a single concatenated image. It automatically splits them
|
| 264 |
+
based on alpha channel boundaries and preprocesses each view.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
image (Image.Image): A concatenated image containing multiple views
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
List[Image.Image]: List of individual preprocessed view images
|
| 271 |
"""
|
| 272 |
image = np.array(image)
|
| 273 |
alpha = image[..., 3]
|
|
|
|
| 283 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
| 284 |
gr.Markdown("""
|
| 285 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
| 286 |
+
* Upload an image and click "Generate & Extract GLB" to create a 3D asset and automatically extract the GLB file.
|
| 287 |
+
* If you want the Gaussian file as well, click "Extract Gaussian" after generation.
|
| 288 |
+
* If the image has alpha channel, it will be used as the mask. Otherwise, we use `rembg` to remove the background.
|
| 289 |
|
| 290 |
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
| 291 |
""")
|
|
|
|
| 315 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
| 316 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
| 317 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
|
|
|
|
|
|
| 318 |
|
| 319 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
| 320 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
| 321 |
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
|
| 322 |
+
|
| 323 |
+
generate_btn = gr.Button("Generate & Extract GLB", variant="primary")
|
| 324 |
+
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
|
|
| 325 |
gr.Markdown("""
|
| 326 |
*NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
| 327 |
""")
|
|
|
|
| 389 |
inputs=[randomize_seed, seed],
|
| 390 |
outputs=[seed],
|
| 391 |
).then(
|
| 392 |
+
generate_and_extract_glb,
|
| 393 |
+
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
|
| 394 |
+
outputs=[output_buf, video_output, model_output, download_glb],
|
| 395 |
).then(
|
| 396 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
| 397 |
+
outputs=[extract_gs_btn, download_glb],
|
| 398 |
)
|
| 399 |
|
| 400 |
video_output.clear(
|
| 401 |
+
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 402 |
+
outputs=[extract_gs_btn, download_glb, download_gs],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 403 |
)
|
| 404 |
|
| 405 |
extract_gs_btn.click(
|
|
|
|
| 412 |
)
|
| 413 |
|
| 414 |
model_output.clear(
|
| 415 |
+
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
| 416 |
+
outputs=[download_glb, download_gs],
|
| 417 |
)
|
| 418 |
|
| 419 |
|
|
|
|
| 425 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
| 426 |
except:
|
| 427 |
pass
|
| 428 |
+
demo.launch(mcp_server=True)
|