Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoConfig, AutoModelForCausalLM
|
| 4 |
+
from accelerate import init_empty_weights
|
| 5 |
+
|
| 6 |
+
def recommend_gpu_mem_util(
|
| 7 |
+
model_config_url,
|
| 8 |
+
batch_size,
|
| 9 |
+
max_prompt_length,
|
| 10 |
+
max_completion_length,
|
| 11 |
+
tp_size,
|
| 12 |
+
gpu_memory=79,
|
| 13 |
+
precision_in_bytes=2,
|
| 14 |
+
kv_multiplier=2
|
| 15 |
+
):
|
| 16 |
+
# Load model config from HF URL
|
| 17 |
+
try:
|
| 18 |
+
config = AutoConfig.from_pretrained(model_config_url)
|
| 19 |
+
except Exception as e:
|
| 20 |
+
msg = f"Failed to load model config from URL: {e}"
|
| 21 |
+
return msg, {"Error": msg}
|
| 22 |
+
|
| 23 |
+
# Extract model config params
|
| 24 |
+
try:
|
| 25 |
+
num_hidden_layers = getattr(config, "num_hidden_layers")
|
| 26 |
+
hidden_size = getattr(config, "hidden_size")
|
| 27 |
+
num_attention_heads = getattr(config, "num_attention_heads")
|
| 28 |
+
num_key_value_heads = getattr(config, "num_key_value_heads", num_attention_heads)
|
| 29 |
+
except Exception as e:
|
| 30 |
+
msg = f"Required field missing in model config: {e}"
|
| 31 |
+
return msg, {"Error": msg}
|
| 32 |
+
|
| 33 |
+
# Estimate model no. parameters
|
| 34 |
+
try:
|
| 35 |
+
with init_empty_weights():
|
| 36 |
+
model = AutoModelForCausalLM.from_config(config)
|
| 37 |
+
num_params = sum(p.numel() for p in model.parameters())
|
| 38 |
+
model_params = num_params / 1e9
|
| 39 |
+
est_msg = f"Estimated model_params from config: {model_params:.2f}B"
|
| 40 |
+
except Exception as e:
|
| 41 |
+
msg = f"Failed to estimate model parameters: {e}"
|
| 42 |
+
return msg, {"Error": msg}
|
| 43 |
+
|
| 44 |
+
# Calculate all memory and utilization values
|
| 45 |
+
try:
|
| 46 |
+
seq_len = max_prompt_length + max_completion_length
|
| 47 |
+
|
| 48 |
+
model_size = float(model_params) * 1024**3 * precision_in_bytes / tp_size
|
| 49 |
+
|
| 50 |
+
# KV_cache_per_token = kv_multiplier (K and V) * num_hidden_layers * (num_key_value_heads * hidden_size / num_attention_heads) * precision_in_bytes
|
| 51 |
+
kv_cache_per_token = (
|
| 52 |
+
kv_multiplier
|
| 53 |
+
* num_hidden_layers
|
| 54 |
+
* (num_key_value_heads * hidden_size / num_attention_heads)
|
| 55 |
+
* precision_in_bytes
|
| 56 |
+
)
|
| 57 |
+
# KV_cache_total = KV_cache_per_token * Batch_size * Seq_len (max_prompt_length + max_completion_length)
|
| 58 |
+
kv_cache_total = kv_cache_per_token * batch_size * seq_len
|
| 59 |
+
# Buffer = (Model + KV_cache) * 0.2 # generous 20% buffer
|
| 60 |
+
buffer_size = 0.2 * (model_size + kv_cache_total)
|
| 61 |
+
# Total = Model + KV_cache + Buffer
|
| 62 |
+
total_required = model_size + kv_cache_total + buffer_size
|
| 63 |
+
# GPU utilization = Total_reqd / Total_gpu
|
| 64 |
+
gpu_memory_bytes = float(gpu_memory) * 1024**3
|
| 65 |
+
gpu_utilization_ratio = total_required / gpu_memory_bytes
|
| 66 |
+
# Round up to nearest 0.05 - this generous estimate works much better than actual prediction!
|
| 67 |
+
rounded_utilization = math.ceil(gpu_utilization_ratio * 20) / 20 + 0.05
|
| 68 |
+
|
| 69 |
+
main_result = f"vllm_gpu_memory_utilization = {rounded_utilization:.2f}"
|
| 70 |
+
ans = {
|
| 71 |
+
"KV_cache_per_token_MB": kv_cache_per_token / 1024**2,
|
| 72 |
+
"KV_cache_total_GB": kv_cache_total / 1024**3,
|
| 73 |
+
"Model_size_GB": model_size / 1024**3,
|
| 74 |
+
"Buffer_GB": buffer_size / 1024**3,
|
| 75 |
+
"Total_required_GB": total_required / 1024**3,
|
| 76 |
+
"GPU_mem_util": gpu_utilization_ratio,
|
| 77 |
+
"GPU_mem_util_recommended": rounded_utilization,
|
| 78 |
+
"model_params": est_msg,
|
| 79 |
+
"num_hidden_layers": num_hidden_layers,
|
| 80 |
+
"hidden_size": hidden_size,
|
| 81 |
+
"num_attention_heads": num_attention_heads,
|
| 82 |
+
"num_key_value_heads": num_key_value_heads,
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
return main_result, ans
|
| 86 |
+
except Exception as e:
|
| 87 |
+
msg = f"Error during calculation: {e}"
|
| 88 |
+
return msg, {"Error": msg}
|
| 89 |
+
|
| 90 |
+
iface = gr.Interface(
|
| 91 |
+
fn=recommend_gpu_mem_util,
|
| 92 |
+
inputs=[
|
| 93 |
+
gr.Textbox(label="Model Config URL (HuggingFace)", value="https://huggingface.co/Qwen/Qwen2.5-Math-1.5B/resolve/main/config.json"),
|
| 94 |
+
gr.Number(label="per_device_train_batch_size", value=4),
|
| 95 |
+
gr.Number(label="max_prompt_length", value=512),
|
| 96 |
+
gr.Number(label="max_completion_length", value=512),
|
| 97 |
+
gr.Number(label="vllm_tensor_parallel_size (tp_size)", value=1),
|
| 98 |
+
gr.Number(label="GPU Memory (GB)", value=79),
|
| 99 |
+
gr.Number(label="Precision in Bytes (e.g., 2)", value=2),
|
| 100 |
+
gr.Number(label="KV Multiplier", value=2),
|
| 101 |
+
],
|
| 102 |
+
outputs=[
|
| 103 |
+
gr.Textbox(label="Recommended vLLM GPU Memory Utilization"),
|
| 104 |
+
gr.JSON(label="Calculation Details"),
|
| 105 |
+
],
|
| 106 |
+
title="vLLM GRPO GPU Memory Utilization Estimator",
|
| 107 |
+
description = """
|
| 108 |
+
Paste your HuggingFace model config URL (ending in config.json), and enter experiment details.
|
| 109 |
+
Model parameters are automatically extracted and estimated from the config.
|
| 110 |
+
|
| 111 |
+
Note: This is a general recommendation and may not be optimal for your specific environment.
|
| 112 |
+
Always verify your actual training GPU requirements. For example, if you're using DeepSpeed, consider utilizing their memory estimation tool:
|
| 113 |
+
https://deepspeed.readthedocs.io/en/latest/memory.html
|
| 114 |
+
|
| 115 |
+
If you encounter "not enough memory" errors, try increasing the GPU memory utilization setting.
|
| 116 |
+
If you experience out-of-memory (OOM) errors, lower the utilization value and/or reduce your batch size.
|
| 117 |
+
""",
|
| 118 |
+
allow_flagging="never"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
if __name__ == "__main__":
|
| 122 |
+
iface.launch()
|