Spaces:
Sleeping
Sleeping
Create test_web_rag.py
Browse files- test_web_rag.py +263 -0
test_web_rag.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import urllib.request
|
| 2 |
+
from urllib.parse import quote
|
| 3 |
+
from seleniumbase import SB
|
| 4 |
+
import markdownify
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
from requests_html import HTMLSession
|
| 7 |
+
import html2text
|
| 8 |
+
import re
|
| 9 |
+
from openai import OpenAI
|
| 10 |
+
import tiktoken
|
| 11 |
+
from zenrows import ZenRowsClient
|
| 12 |
+
import requests
|
| 13 |
+
import os
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
|
| 16 |
+
load_dotenv()
|
| 17 |
+
ZENROWS_KEY = os.getenv('ZENROWS_KEY')
|
| 18 |
+
client = OpenAI()
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def get_fast_url_source(url):
|
| 22 |
+
session = HTMLSession()
|
| 23 |
+
r = session.get(url)
|
| 24 |
+
return r.text
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def convert_html_to_text(html):
|
| 28 |
+
h = html2text.HTML2Text()
|
| 29 |
+
h.body_width = 0 # Disable line wrapping
|
| 30 |
+
text = h.handle(html)
|
| 31 |
+
text = re.sub(r'\n\s*', '', text)
|
| 32 |
+
text = re.sub(r'\* \\', '', text)
|
| 33 |
+
" ".join(text.split())
|
| 34 |
+
return text
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_google_search_url(query):
|
| 38 |
+
url = 'https://www.google.com/search?q=' + quote(query)
|
| 39 |
+
# Perform the request
|
| 40 |
+
request = urllib.request.Request(url)
|
| 41 |
+
|
| 42 |
+
# Set a normal User Agent header, otherwise Google will block the request.
|
| 43 |
+
request.add_header('User-Agent',
|
| 44 |
+
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36')
|
| 45 |
+
raw_response = urllib.request.urlopen(request).read()
|
| 46 |
+
|
| 47 |
+
# Read the repsonse as a utf-8 string
|
| 48 |
+
html = raw_response.decode("utf-8")
|
| 49 |
+
|
| 50 |
+
# The code to get the html contents here.
|
| 51 |
+
soup = BeautifulSoup(html, 'html.parser')
|
| 52 |
+
|
| 53 |
+
# Find all the search result divs
|
| 54 |
+
divs = soup.select("#search div.g")
|
| 55 |
+
# print(divs)
|
| 56 |
+
url = []
|
| 57 |
+
for div in divs:
|
| 58 |
+
# Search for a h3 tag
|
| 59 |
+
results = div.select("h3")
|
| 60 |
+
urls = div.select('a')
|
| 61 |
+
|
| 62 |
+
# Check if we have found a result
|
| 63 |
+
# if (len(results) >= 1):
|
| 64 |
+
# # Print the title
|
| 65 |
+
# h3 = results[0]
|
| 66 |
+
# print(h3.get_text())
|
| 67 |
+
|
| 68 |
+
url.append(urls[0]['href'])
|
| 69 |
+
return url
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def format_text(text):
|
| 73 |
+
soup = BeautifulSoup(text, 'html.parser')
|
| 74 |
+
results = soup.find_all(['p', 'h1', 'h2', 'span'])
|
| 75 |
+
text = ''
|
| 76 |
+
for key, result in enumerate(results):
|
| 77 |
+
if key % 2 == 0:
|
| 78 |
+
text = text + str(result) + ' '
|
| 79 |
+
else:
|
| 80 |
+
text = text + str(result) + ' '
|
| 81 |
+
return text
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_page_source_selenium_base(url):
|
| 85 |
+
with SB(uc_cdp=True, guest_mode=True, headless=True) as sb:
|
| 86 |
+
sb.open(url)
|
| 87 |
+
sb.sleep(5)
|
| 88 |
+
page_source = sb.driver.get_page_source()
|
| 89 |
+
return page_source
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def num_tokens_from_string(string: str, encoding_name: str) -> int:
|
| 93 |
+
encoding = tiktoken.get_encoding(encoding_name)
|
| 94 |
+
# encoding = tiktoken.encoding_for_model(encoding_name)
|
| 95 |
+
num_tokens = len(encoding.encode(string))
|
| 96 |
+
return num_tokens
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def encoding_getter(encoding_type: str):
|
| 100 |
+
"""
|
| 101 |
+
Returns the appropriate encoding based on the given encoding type (either an encoding string or a model name).
|
| 102 |
+
"""
|
| 103 |
+
if "k_base" in encoding_type:
|
| 104 |
+
return tiktoken.get_encoding(encoding_type)
|
| 105 |
+
else:
|
| 106 |
+
return tiktoken.encoding_for_model(encoding_type)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def tokenizer(string: str, encoding_type: str) -> list:
|
| 110 |
+
"""
|
| 111 |
+
Returns the tokens in a text string using the specified encoding.
|
| 112 |
+
"""
|
| 113 |
+
encoding = encoding_getter(encoding_type)
|
| 114 |
+
tokens = encoding.encode(string)
|
| 115 |
+
return tokens
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def token_counter(string: str, encoding_type: str) -> int:
|
| 119 |
+
"""
|
| 120 |
+
Returns the number of tokens in a text string using the specified encoding.
|
| 121 |
+
"""
|
| 122 |
+
num_tokens = len(tokenizer(string, encoding_type))
|
| 123 |
+
return num_tokens
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def format_output(text):
|
| 127 |
+
page_source = format_text(text)
|
| 128 |
+
page_source = markdownify.markdownify(page_source)
|
| 129 |
+
# page_source = convert_html_to_text(page_source)
|
| 130 |
+
page_source = " ".join(page_source.split())
|
| 131 |
+
return page_source
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def clean_text(text):
|
| 135 |
+
# Remove URLs
|
| 136 |
+
text = re.sub(r'http[s]?://\S+', '', text)
|
| 137 |
+
|
| 138 |
+
# Remove special characters and punctuation (keep only letters, numbers, and basic punctuation)
|
| 139 |
+
text = re.sub(r'[^a-zA-Z0-9\s,.!?-]', '', text)
|
| 140 |
+
|
| 141 |
+
# Normalize whitespace
|
| 142 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 143 |
+
|
| 144 |
+
return text
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def call_open_ai(system_prompt, max_tokens=800, stream=False):
|
| 148 |
+
messages = [
|
| 149 |
+
{
|
| 150 |
+
"role": "user",
|
| 151 |
+
"content": system_prompt
|
| 152 |
+
}
|
| 153 |
+
]
|
| 154 |
+
|
| 155 |
+
stream = client.chat.completions.create(
|
| 156 |
+
model="gpt-3.5-turbo",
|
| 157 |
+
messages=messages,
|
| 158 |
+
temperature=0,
|
| 159 |
+
max_tokens=max_tokens,
|
| 160 |
+
top_p=0,
|
| 161 |
+
frequency_penalty=0,
|
| 162 |
+
presence_penalty=0,
|
| 163 |
+
stream=stream
|
| 164 |
+
)
|
| 165 |
+
return stream.choices[0].message.content
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def url_summary(text, question):
|
| 169 |
+
system_prompt = """
|
| 170 |
+
Summarize the given text, please add all the important topics and numerical data.
|
| 171 |
+
|
| 172 |
+
While summarizing please keep this question in mind.
|
| 173 |
+
question:- {question}
|
| 174 |
+
|
| 175 |
+
text:
|
| 176 |
+
{text}
|
| 177 |
+
""".format(question=question, text=text)
|
| 178 |
+
return call_open_ai(system_prompt=system_prompt, max_tokens=800)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def get_google_search_query(question):
|
| 182 |
+
system_prompt = """
|
| 183 |
+
convert this question to the Google search query and return only query.
|
| 184 |
+
question:- {question}
|
| 185 |
+
""".format(question=question)
|
| 186 |
+
|
| 187 |
+
return call_open_ai(system_prompt=system_prompt, max_tokens=50)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def is_urlfile(url):
|
| 191 |
+
# Check if online file exists
|
| 192 |
+
try:
|
| 193 |
+
r = urllib.request.urlopen(url) # response
|
| 194 |
+
return r.getcode() == 200
|
| 195 |
+
except urllib.request.HTTPError:
|
| 196 |
+
return False
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def check_url_pdf_file(url):
|
| 200 |
+
r = requests.get(url)
|
| 201 |
+
content_type = r.headers.get('content-type')
|
| 202 |
+
|
| 203 |
+
if 'application/pdf' in content_type:
|
| 204 |
+
return True
|
| 205 |
+
else:
|
| 206 |
+
return False
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def zenrows_scrapper(url):
|
| 210 |
+
zen_client = ZenRowsClient(ZENROWS_KEY)
|
| 211 |
+
params = {"js_render": "true"}
|
| 212 |
+
response = zen_client.get(url, params=params)
|
| 213 |
+
|
| 214 |
+
return response.text
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def get_new_question_from_history(pre_question, new_question, answer):
|
| 218 |
+
system_prompt = """
|
| 219 |
+
Generate a new Google search query using the previous question and answer. And return only the query.
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
previous question:- {pre_question}
|
| 223 |
+
answer:- {answer}
|
| 224 |
+
|
| 225 |
+
new question:- {new_question}
|
| 226 |
+
""".format(pre_question=pre_question, answer=answer, new_question=new_question)
|
| 227 |
+
|
| 228 |
+
return call_open_ai(system_prompt=system_prompt, max_tokens=50)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def get_docs_from_web(question, history, n_web_search, strategy):
|
| 232 |
+
if history:
|
| 233 |
+
question = get_new_question_from_history(history[0][0], question, history[0][1])
|
| 234 |
+
urls = get_google_search_url(get_google_search_query(question))[:n_web_search]
|
| 235 |
+
urls = list(set(urls))
|
| 236 |
+
docs = ''
|
| 237 |
+
yield f"Scraping started for {len(urls)} urls:-\n\n"
|
| 238 |
+
for key, url in enumerate(urls):
|
| 239 |
+
if '.pdf' in url:
|
| 240 |
+
yield f"Scraping skipped pdf detected. {key + 1}/{len(urls)} - {url} ❌\n"
|
| 241 |
+
continue
|
| 242 |
+
|
| 243 |
+
if strategy == 'Deep':
|
| 244 |
+
# page_source = get_page_source_selenium_base(url)
|
| 245 |
+
page_source = zenrows_scrapper(url)
|
| 246 |
+
formatted_page_source = format_output(page_source)
|
| 247 |
+
formatted_page_source = clean_text(formatted_page_source)
|
| 248 |
+
else:
|
| 249 |
+
page_source = get_fast_url_source(url)
|
| 250 |
+
formatted_page_source = format_output(page_source)
|
| 251 |
+
formatted_page_source = clean_text(formatted_page_source)
|
| 252 |
+
|
| 253 |
+
tokens = token_counter(formatted_page_source, 'gpt-3.5-turbo')
|
| 254 |
+
|
| 255 |
+
if tokens >= 15585:
|
| 256 |
+
yield f"Scraping skipped as token limit exceeded. {key + 1}/{len(urls)} - {url} ❌\n"
|
| 257 |
+
continue
|
| 258 |
+
|
| 259 |
+
summary = url_summary(formatted_page_source, question)
|
| 260 |
+
docs += summary
|
| 261 |
+
docs += '\n Source:-' + url + '\n\n'
|
| 262 |
+
yield f"Scraping Done {key + 1}/{len(urls)} - {url} ✅\n"
|
| 263 |
+
yield {"data": docs}
|