Spaces:
Runtime error
Runtime error
| from langchain.prompts.prompt import PromptTemplate | |
| from langchain.llms import OpenAI, OpenAIChat | |
| from langchain.chains import ChatVectorDBChain, ConversationalRetrievalChain | |
| from langchain.chat_models import ChatOpenAI | |
| _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a | |
| standalone question. | |
| Chat History: | |
| {chat_history} | |
| Follow Up Input: {question} | |
| Standalone question:""" | |
| CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template) | |
| template = """You are a personal assistance for twimbit company for answering questions. You are given the following | |
| extracted parts of a long document and a question. Provide a brief answer. If you don't know the answer, just say " | |
| I'm not sure." Question: {question} ========= {context} ========= Answer in Markdown: """ | |
| QA_PROMPT = PromptTemplate(template=template, input_variables=["question", "context"]) | |
| def get_chain(vectorstore): | |
| llm = ChatOpenAI(temperature=0) | |
| qa_chain = ConversationalRetrievalChain.from_llm( | |
| llm, | |
| vectorstore.as_retriever(search_kwargs={"k": 4}) | |
| # qa_prompt=QA_PROMPT, | |
| # condense_question_prompt=CONDENSE_QUESTION_PROMPT, | |
| ) | |
| return qa_chain | |