Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import pandas as pd | |
| from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer | |
| import PyPDF2 | |
| import docx | |
| import io | |
| def chunk_text(text, chunk_size=128): | |
| words = text.split() | |
| chunks = [] | |
| current_chunk = [] | |
| current_length = 0 | |
| for word in words: | |
| if current_length + len(word) + 1 > chunk_size: | |
| chunks.append(' '.join(current_chunk)) | |
| current_chunk = [word] | |
| current_length = len(word) | |
| else: | |
| current_chunk.append(word) | |
| current_length += len(word) + 1 | |
| if current_chunk: | |
| chunks.append(' '.join(current_chunk)) | |
| return chunks | |
| st.set_page_config(layout="wide") | |
| # Function to read text from uploaded file | |
| def read_file(file): | |
| if file.type == "text/plain": | |
| return file.getvalue().decode("utf-8") | |
| elif file.type == "application/pdf": | |
| pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue())) | |
| return " ".join(page.extract_text() for page in pdf_reader.pages) | |
| elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document": | |
| doc = docx.Document(io.BytesIO(file.getvalue())) | |
| return " ".join(paragraph.text for paragraph in doc.paragraphs) | |
| else: | |
| st.error("Unsupported file type") | |
| return None | |
| st.title("Turkish NER Models Testing") | |
| model_list = [ | |
| 'girayyagmur/bert-base-turkish-ner-cased', | |
| 'savasy/bert-base-turkish-ner-cased', | |
| 'xlm-roberta-large-finetuned-conll03-english', | |
| 'asahi417/tner-xlm-roberta-base-ontonotes5' | |
| ] | |
| st.sidebar.header("Select NER Model") | |
| model_checkpoint = st.sidebar.radio("", model_list) | |
| st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/") | |
| st.sidebar.write("Only PDF, DOCX, and TXT files are supported.") | |
| # Determine aggregation strategy | |
| aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"] else "first" | |
| st.subheader("Select Text Input Method") | |
| input_method = st.radio("", ('Write or Paste New Text', 'Upload File')) | |
| if input_method == "Write or Paste New Text": | |
| input_text = st.text_area('Write or Paste Text Below', value="", height=128) | |
| else: | |
| uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"]) | |
| if uploaded_file is not None: | |
| input_text = read_file(uploaded_file) | |
| if input_text: | |
| st.text_area("Extracted Text", input_text, height=128) | |
| else: | |
| input_text = "" | |
| def setModel(model_checkpoint, aggregation): | |
| model = AutoModelForTokenClassification.from_pretrained(model_checkpoint) | |
| tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
| return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation) | |
| def entity_comb(output): | |
| output_comb = [] | |
| for ind, entity in enumerate(output): | |
| if ind == 0: | |
| output_comb.append(entity) | |
| elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]: | |
| output_comb[-1]["word"] += output[ind]["word"] | |
| output_comb[-1]["end"] = output[ind]["end"] | |
| else: | |
| output_comb.append(entity) | |
| return output_comb | |
| def create_mask_dict(entities): | |
| mask_dict = {} | |
| entity_counters = {} | |
| for entity in entities: | |
| if entity['entity_group'] not in ['CARDINAL', 'EVENT']: | |
| if entity['word'] not in mask_dict: | |
| if entity['entity_group'] not in entity_counters: | |
| entity_counters[entity['entity_group']] = 1 | |
| else: | |
| entity_counters[entity['entity_group']] += 1 | |
| mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}" | |
| return mask_dict | |
| def create_masked_text(input_text, entities): | |
| mask_dict = create_mask_dict(entities) | |
| masked_text = input_text | |
| for entity in sorted(entities, key=lambda x: x['start'], reverse=True): | |
| if entity['entity_group'] not in ['CARDINAL', 'EVENT']: | |
| masked_text = ( | |
| masked_text[:entity['start']] + | |
| f"<{mask_dict[entity['word']]}> " + # Use angle brackets for clarity | |
| masked_text[entity['end']:] | |
| ) | |
| return masked_text | |
| def replace_words_in_text(input_text, entities): | |
| replace_dict = create_mask_dict(entities) | |
| for word, replacement in replace_dict.items(): | |
| text = text.replace(word, replacement) | |
| return text | |
| Run_Button = st.button("Run") | |
| if Run_Button and input_text: | |
| ner_pipeline = setModel(model_checkpoint, aggregation) | |
| # Chunk the input text | |
| chunks = chunk_text(input_text) | |
| # Process each chunk | |
| all_outputs = [] | |
| for i, chunk in enumerate(chunks): | |
| output = ner_pipeline(chunk) | |
| # Adjust start and end positions for entities in chunks after the first | |
| if i > 0: | |
| offset = len(' '.join(chunks[:i])) + 1 | |
| for entity in output: | |
| entity['start'] += offset | |
| entity['end'] += offset | |
| all_outputs.extend(output) | |
| # Combine entities | |
| output_comb = entity_comb(all_outputs) | |
| # Create masked text and masking dictionary | |
| masked_text = replace_words_in_text(input_text, output_comb)#create_masked_text(input_text, output_comb) | |
| mask_dict = create_mask_dict(output_comb) | |
| # Display the masked text and masking dictionary | |
| st.subheader("Masked Text Preview") | |
| st.text(masked_text) | |
| st.subheader("Masking Dictionary") | |
| st.json(mask_dict) | |