Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
-
import spacy
|
| 4 |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
| 5 |
import PyPDF2
|
| 6 |
import docx
|
|
@@ -92,6 +91,7 @@ def entity_comb(output):
|
|
| 92 |
else:
|
| 93 |
output_comb.append(entity)
|
| 94 |
return output_comb
|
|
|
|
| 95 |
def create_mask_dict(entities):
|
| 96 |
mask_dict = {}
|
| 97 |
entity_counters = {}
|
|
@@ -104,14 +104,13 @@ def create_mask_dict(entities):
|
|
| 104 |
entity_counters[entity['entity_group']] += 1
|
| 105 |
mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}"
|
| 106 |
return mask_dict
|
|
|
|
| 107 |
def create_masked_text(input_text, entities):
|
| 108 |
-
# Create the mask dictionary
|
| 109 |
mask_dict = create_mask_dict(entities)
|
| 110 |
|
| 111 |
masked_text = input_text
|
| 112 |
for entity in sorted(entities, key=lambda x: x['start'], reverse=True):
|
| 113 |
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
|
| 114 |
-
# Replace the entity with its entity group from the mask dictionary
|
| 115 |
masked_text = (
|
| 116 |
masked_text[:entity['start']] +
|
| 117 |
f"<{mask_dict[entity['word']]}> " + # Use angle brackets for clarity
|
|
@@ -140,47 +139,17 @@ if Run_Button and input_text:
|
|
| 140 |
entity['end'] += offset
|
| 141 |
|
| 142 |
all_outputs.extend(output)
|
| 143 |
-
|
| 144 |
|
| 145 |
# Combine entities
|
| 146 |
-
|
| 147 |
output_comb = entity_comb(all_outputs)
|
| 148 |
|
| 149 |
-
# Create
|
| 150 |
-
mask_dict = create_mask_dict(output_comb)
|
| 151 |
-
|
| 152 |
masked_text = create_masked_text(input_text, output_comb)
|
| 153 |
-
|
| 154 |
-
# Apply masking and add masked_word column
|
| 155 |
-
for entity in output_comb:
|
| 156 |
-
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
|
| 157 |
-
entity['masked_word'] = mask_dict.get(entity['word'], entity['word'])
|
| 158 |
-
else:
|
| 159 |
-
entity['masked_word'] = entity['word']
|
| 160 |
-
print("output_comb", output_comb)
|
| 161 |
-
#df = pd.DataFrame.from_dict(output_comb)
|
| 162 |
-
#cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
|
| 163 |
-
#df_final = df[cols_to_keep].loc[:,~df.columns.duplicated()].copy()
|
| 164 |
-
|
| 165 |
-
#st.subheader("Recognized Entities")
|
| 166 |
-
#st.dataframe(df_final)
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
spacy_display = {"ents": [], "text": input_text, "title": None}
|
| 172 |
-
for entity in output_comb:
|
| 173 |
-
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
|
| 174 |
-
label = f"{entity['entity_group']}_{mask_dict[entity['word']].split('_')[1]}"
|
| 175 |
-
else:
|
| 176 |
-
label = entity['entity_group']
|
| 177 |
-
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": label})
|
| 178 |
-
|
| 179 |
-
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
|
| 180 |
-
st.write(html, unsafe_allow_html=True)
|
| 181 |
|
| 182 |
st.subheader("Masking Dictionary")
|
| 183 |
st.json(mask_dict)
|
| 184 |
-
|
| 185 |
-
st.subheader("Masked Text Preview")
|
| 186 |
-
st.text(masked_text)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
| 4 |
import PyPDF2
|
| 5 |
import docx
|
|
|
|
| 91 |
else:
|
| 92 |
output_comb.append(entity)
|
| 93 |
return output_comb
|
| 94 |
+
|
| 95 |
def create_mask_dict(entities):
|
| 96 |
mask_dict = {}
|
| 97 |
entity_counters = {}
|
|
|
|
| 104 |
entity_counters[entity['entity_group']] += 1
|
| 105 |
mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}"
|
| 106 |
return mask_dict
|
| 107 |
+
|
| 108 |
def create_masked_text(input_text, entities):
|
|
|
|
| 109 |
mask_dict = create_mask_dict(entities)
|
| 110 |
|
| 111 |
masked_text = input_text
|
| 112 |
for entity in sorted(entities, key=lambda x: x['start'], reverse=True):
|
| 113 |
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
|
|
|
|
| 114 |
masked_text = (
|
| 115 |
masked_text[:entity['start']] +
|
| 116 |
f"<{mask_dict[entity['word']]}> " + # Use angle brackets for clarity
|
|
|
|
| 139 |
entity['end'] += offset
|
| 140 |
|
| 141 |
all_outputs.extend(output)
|
|
|
|
| 142 |
|
| 143 |
# Combine entities
|
|
|
|
| 144 |
output_comb = entity_comb(all_outputs)
|
| 145 |
|
| 146 |
+
# Create masked text and masking dictionary
|
|
|
|
|
|
|
| 147 |
masked_text = create_masked_text(input_text, output_comb)
|
| 148 |
+
mask_dict = create_mask_dict(output_comb)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
# Display the masked text and masking dictionary
|
| 151 |
+
st.subheader("Masked Text Preview")
|
| 152 |
+
st.text(masked_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
st.subheader("Masking Dictionary")
|
| 155 |
st.json(mask_dict)
|
|
|
|
|
|
|
|
|