Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,93 +5,9 @@ from transformers import pipeline, AutoModelForTokenClassification, AutoTokenize
|
|
| 5 |
import PyPDF2
|
| 6 |
import docx
|
| 7 |
import io
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
words = text.split()
|
| 11 |
-
chunks = []
|
| 12 |
-
current_chunk = []
|
| 13 |
-
current_length = 0
|
| 14 |
-
|
| 15 |
-
for word in words:
|
| 16 |
-
if current_length + len(word) + 1 > chunk_size:
|
| 17 |
-
chunks.append(' '.join(current_chunk))
|
| 18 |
-
current_chunk = [word]
|
| 19 |
-
current_length = len(word)
|
| 20 |
-
else:
|
| 21 |
-
current_chunk.append(word)
|
| 22 |
-
current_length += len(word) + 1
|
| 23 |
-
|
| 24 |
-
if current_chunk:
|
| 25 |
-
chunks.append(' '.join(current_chunk))
|
| 26 |
-
|
| 27 |
-
return chunks
|
| 28 |
-
|
| 29 |
-
st.set_page_config(layout="wide")
|
| 30 |
-
|
| 31 |
-
# Function to read text from uploaded file
|
| 32 |
-
def read_file(file):
|
| 33 |
-
if file.type == "text/plain":
|
| 34 |
-
return file.getvalue().decode("utf-8")
|
| 35 |
-
elif file.type == "application/pdf":
|
| 36 |
-
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file.getvalue()))
|
| 37 |
-
return " ".join(page.extract_text() for page in pdf_reader.pages)
|
| 38 |
-
elif file.type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document":
|
| 39 |
-
doc = docx.Document(io.BytesIO(file.getvalue()))
|
| 40 |
-
return " ".join(paragraph.text for paragraph in doc.paragraphs)
|
| 41 |
-
else:
|
| 42 |
-
st.error("Unsupported file type")
|
| 43 |
-
return None
|
| 44 |
-
|
| 45 |
-
st.title("Turkish NER Models Testing")
|
| 46 |
-
|
| 47 |
-
model_list = [
|
| 48 |
-
'girayyagmur/bert-base-turkish-ner-cased',
|
| 49 |
-
'savasy/bert-base-turkish-ner-cased',
|
| 50 |
-
'xlm-roberta-large-finetuned-conll03-english',
|
| 51 |
-
'asahi417/tner-xlm-roberta-base-ontonotes5'
|
| 52 |
-
]
|
| 53 |
-
|
| 54 |
-
st.sidebar.header("Select NER Model")
|
| 55 |
-
model_checkpoint = st.sidebar.radio("", model_list)
|
| 56 |
-
|
| 57 |
-
st.sidebar.write("For details of models: 'https://huggingface.co/akdeniz27/")
|
| 58 |
-
st.sidebar.write("Only PDF, DOCX, and TXT files are supported.")
|
| 59 |
-
|
| 60 |
-
# Determine aggregation strategy
|
| 61 |
-
aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turkish-ner", "xlm-roberta-large-finetuned-conll03-english", "asahi417/tner-xlm-roberta-base-ontonotes5"] else "first"
|
| 62 |
-
|
| 63 |
-
st.subheader("Select Text Input Method")
|
| 64 |
-
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
|
| 65 |
-
|
| 66 |
-
if input_method == "Write or Paste New Text":
|
| 67 |
-
input_text = st.text_area('Write or Paste Text Below', value="", height=128)
|
| 68 |
-
else:
|
| 69 |
-
uploaded_file = st.file_uploader("Choose a file", type=["txt", "pdf", "docx"])
|
| 70 |
-
if uploaded_file is not None:
|
| 71 |
-
input_text = read_file(uploaded_file)
|
| 72 |
-
if input_text:
|
| 73 |
-
st.text_area("Extracted Text", input_text, height=128)
|
| 74 |
-
else:
|
| 75 |
-
input_text = ""
|
| 76 |
-
|
| 77 |
-
@st.cache_resource
|
| 78 |
-
def setModel(model_checkpoint, aggregation):
|
| 79 |
-
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
|
| 80 |
-
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 81 |
-
return pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy=aggregation)
|
| 82 |
-
|
| 83 |
-
@st.cache_resource
|
| 84 |
-
def entity_comb(output):
|
| 85 |
-
output_comb = []
|
| 86 |
-
for ind, entity in enumerate(output):
|
| 87 |
-
if ind == 0:
|
| 88 |
-
output_comb.append(entity)
|
| 89 |
-
elif output[ind]["start"] == output[ind-1]["end"] and output[ind]["entity_group"] == output[ind-1]["entity_group"]:
|
| 90 |
-
output_comb[-1]["word"] += output[ind]["word"]
|
| 91 |
-
output_comb[-1]["end"] = output[ind]["end"]
|
| 92 |
-
else:
|
| 93 |
-
output_comb.append(entity)
|
| 94 |
-
return output_comb
|
| 95 |
|
| 96 |
def create_mask_dict(entities):
|
| 97 |
mask_dict = {}
|
|
@@ -105,14 +21,13 @@ def create_mask_dict(entities):
|
|
| 105 |
entity_counters[entity['entity_group']] += 1
|
| 106 |
mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}"
|
| 107 |
return mask_dict
|
| 108 |
-
|
|
|
|
| 109 |
masked_text = input_text
|
| 110 |
-
for
|
| 111 |
-
|
| 112 |
-
masked_text = masked_text[:entity['start']] + mask_dict[entity['word']] + masked_text[entity['end']:]
|
| 113 |
return masked_text
|
| 114 |
|
| 115 |
-
|
| 116 |
Run_Button = st.button("Run")
|
| 117 |
|
| 118 |
if Run_Button and input_text:
|
|
@@ -134,47 +49,34 @@ if Run_Button and input_text:
|
|
| 134 |
entity['end'] += offset
|
| 135 |
|
| 136 |
all_outputs.extend(output)
|
| 137 |
-
|
| 138 |
|
| 139 |
# Combine entities
|
| 140 |
-
|
| 141 |
output_comb = entity_comb(all_outputs)
|
| 142 |
|
| 143 |
# Create mask dictionary
|
| 144 |
mask_dict = create_mask_dict(output_comb)
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
# Apply masking and add masked_word column
|
| 149 |
-
for entity in output_comb:
|
| 150 |
-
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
|
| 151 |
-
entity['masked_word'] = mask_dict.get(entity['word'], entity['word'])
|
| 152 |
-
else:
|
| 153 |
-
entity['masked_word'] = entity['word']
|
| 154 |
-
print("output_comb", output_comb)
|
| 155 |
-
#df = pd.DataFrame.from_dict(output_comb)
|
| 156 |
-
#cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
|
| 157 |
-
#df_final = df[cols_to_keep].loc[:,~df.columns.duplicated()].copy()
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
spacy_display = {"ents": [], "text": input_text, "title": None}
|
| 166 |
for entity in output_comb:
|
| 167 |
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
|
| 168 |
-
label =
|
| 169 |
-
|
| 170 |
-
label = entity['entity_group']
|
| 171 |
-
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": label})
|
| 172 |
|
| 173 |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
|
| 174 |
-
st.write(html, unsafe_allow_html=True)
|
| 175 |
-
|
| 176 |
-
st.subheader("Masking Dictionary")
|
| 177 |
-
st.json(mask_dict)
|
| 178 |
-
|
| 179 |
-
st.subheader("Masked Text Preview")
|
| 180 |
-
st.text(masked_text)
|
|
|
|
| 5 |
import PyPDF2
|
| 6 |
import docx
|
| 7 |
import io
|
| 8 |
+
import re
|
| 9 |
|
| 10 |
+
# ... [Previous functions remain unchanged] ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
def create_mask_dict(entities):
|
| 13 |
mask_dict = {}
|
|
|
|
| 21 |
entity_counters[entity['entity_group']] += 1
|
| 22 |
mask_dict[entity['word']] = f"{entity['entity_group']}_{entity_counters[entity['entity_group']]}"
|
| 23 |
return mask_dict
|
| 24 |
+
|
| 25 |
+
def create_masked_text(input_text, mask_dict):
|
| 26 |
masked_text = input_text
|
| 27 |
+
for word, mask in sorted(mask_dict.items(), key=lambda x: len(x[0]), reverse=True):
|
| 28 |
+
masked_text = re.sub(r'\b' + re.escape(word) + r'\b', mask, masked_text)
|
|
|
|
| 29 |
return masked_text
|
| 30 |
|
|
|
|
| 31 |
Run_Button = st.button("Run")
|
| 32 |
|
| 33 |
if Run_Button and input_text:
|
|
|
|
| 49 |
entity['end'] += offset
|
| 50 |
|
| 51 |
all_outputs.extend(output)
|
|
|
|
| 52 |
|
| 53 |
# Combine entities
|
|
|
|
| 54 |
output_comb = entity_comb(all_outputs)
|
| 55 |
|
| 56 |
# Create mask dictionary
|
| 57 |
mask_dict = create_mask_dict(output_comb)
|
| 58 |
|
| 59 |
+
# Create masked text
|
| 60 |
+
masked_text = create_masked_text(input_text, mask_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
st.subheader("Masked Text")
|
| 63 |
+
st.text(masked_text)
|
| 64 |
|
| 65 |
+
st.subheader("Masking Dictionary")
|
| 66 |
+
st.json(mask_dict)
|
| 67 |
+
|
| 68 |
+
# Create a DataFrame for display
|
| 69 |
+
df = pd.DataFrame([(word, mask) for word, mask in mask_dict.items()], columns=['Original', 'Masked'])
|
| 70 |
+
st.subheader("Masking Table")
|
| 71 |
+
st.dataframe(df)
|
| 72 |
+
|
| 73 |
+
# Optional: Display original text with highlights
|
| 74 |
+
st.subheader("Original Text with Highlights")
|
| 75 |
spacy_display = {"ents": [], "text": input_text, "title": None}
|
| 76 |
for entity in output_comb:
|
| 77 |
if entity['entity_group'] not in ['CARDINAL', 'EVENT']:
|
| 78 |
+
label = mask_dict[entity['word']]
|
| 79 |
+
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": label})
|
|
|
|
|
|
|
| 80 |
|
| 81 |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
|
| 82 |
+
st.write(html, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|