Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -22,6 +22,12 @@ def read_file(file):
|
|
| 22 |
st.error("Unsupported file type")
|
| 23 |
return None
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
st.title("Turkish NER Models Testing")
|
| 26 |
|
| 27 |
model_list = [
|
|
@@ -45,8 +51,6 @@ aggregation = "simple" if model_checkpoint in ["akdeniz27/xlm-roberta-base-turki
|
|
| 45 |
st.subheader("Select Text Input Method")
|
| 46 |
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
if input_method == "Write or Paste New Text":
|
| 51 |
input_text = st.text_area('Write or Paste Text Below', value="", height=128)
|
| 52 |
else:
|
|
@@ -81,10 +85,13 @@ Run_Button = st.button("Run")
|
|
| 81 |
|
| 82 |
if Run_Button and input_text:
|
| 83 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
| 84 |
-
output = ner_pipeline(input_text)
|
| 85 |
-
|
| 86 |
-
output_comb = entity_comb(output)
|
| 87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
df = pd.DataFrame.from_dict(output_comb)
|
| 89 |
cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
|
| 90 |
df_final = df[cols_to_keep]
|
|
@@ -96,6 +103,6 @@ if Run_Button and input_text:
|
|
| 96 |
spacy_display = {"ents": [], "text": input_text, "title": None}
|
| 97 |
for entity in output_comb:
|
| 98 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
| 99 |
-
|
| 100 |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
|
| 101 |
-
st.write(html, unsafe_allow_html=True)
|
|
|
|
| 22 |
st.error("Unsupported file type")
|
| 23 |
return None
|
| 24 |
|
| 25 |
+
# Function to generate text chunks
|
| 26 |
+
def chunk_text(text, max_length=128):
|
| 27 |
+
words = text.split()
|
| 28 |
+
for i in range(0, len(words), max_length):
|
| 29 |
+
yield " ".join(words[i:i + max_length])
|
| 30 |
+
|
| 31 |
st.title("Turkish NER Models Testing")
|
| 32 |
|
| 33 |
model_list = [
|
|
|
|
| 51 |
st.subheader("Select Text Input Method")
|
| 52 |
input_method = st.radio("", ('Write or Paste New Text', 'Upload File'))
|
| 53 |
|
|
|
|
|
|
|
| 54 |
if input_method == "Write or Paste New Text":
|
| 55 |
input_text = st.text_area('Write or Paste Text Below', value="", height=128)
|
| 56 |
else:
|
|
|
|
| 85 |
|
| 86 |
if Run_Button and input_text:
|
| 87 |
ner_pipeline = setModel(model_checkpoint, aggregation)
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
+
# Process the text in chunks
|
| 90 |
+
output_comb = []
|
| 91 |
+
for chunk in chunk_text(input_text):
|
| 92 |
+
output = ner_pipeline(chunk)
|
| 93 |
+
output_comb.extend(entity_comb(output))
|
| 94 |
+
|
| 95 |
df = pd.DataFrame.from_dict(output_comb)
|
| 96 |
cols_to_keep = ['word', 'entity_group', 'score', 'start', 'end']
|
| 97 |
df_final = df[cols_to_keep]
|
|
|
|
| 103 |
spacy_display = {"ents": [], "text": input_text, "title": None}
|
| 104 |
for entity in output_comb:
|
| 105 |
spacy_display["ents"].append({"start": entity["start"], "end": entity["end"], "label": entity["entity_group"]})
|
| 106 |
+
|
| 107 |
html = spacy.displacy.render(spacy_display, style="ent", minify=True, manual=True)
|
| 108 |
+
st.write(html, unsafe_allow_html=True)
|