import gradio as gr import torch from torchvision.datasets import CIFAR100 from PIL import Image import random import numpy as np from transformers import AutoImageProcessor, Swin2SRForImageSuperResolution Image.warnings.simplefilter('ignore', Image.DecompressionBombWarning) try: sr_processor = AutoImageProcessor.from_pretrained("caidas/swin2SR-classical-sr-x4-64") sr_model = Swin2SRForImageSuperResolution.from_pretrained("caidas/swin2SR-classical-sr-x4-64") sr_model.eval() except Exception as e: sr_model = None try: classifier_model = torch.hub.load("chenyaofo/pytorch-cifar-models", "cifar100_resnet56", pretrained=True) classifier_model.eval() except Exception as e: classifier_model = None cifar100_dataset = CIFAR100(root="./cifar100_data", train=False, download=True) cifar100_labels = cifar100_dataset.classes def upscale_image(low_res_pil_image): if sr_model is None or low_res_pil_image is None: return low_res_pil_image.resize((400, 400), Image.Resampling.NEAREST) with torch.no_grad(): inputs = sr_processor(low_res_pil_image, return_tensors="pt") outputs = sr_model(**inputs) output_tensor = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1) output_numpy = np.moveaxis(output_tensor.numpy(), 0, -1) output_image = (output_numpy * 255.0).round().astype(np.uint8) return Image.fromarray(output_image) def predict_ai(low_res_pil_image): try: from torchvision import transforms preprocess_for_classifier = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=[0.5071, 0.4867, 0.4408], std=[0.2675, 0.2565, 0.2761] ), ]) img_t = preprocess_for_classifier(low_res_pil_image.convert("RGB")) batch_t = torch.unsqueeze(img_t, 0) with torch.no_grad(): out = classifier_model(batch_t) _, index = torch.max(out, 1) return cifar100_labels[index[0]] except Exception as e: return "Error" def generate_category_markdown(): md = "|||||\n|:---|:---|:---|:---|\n" for i in range(0, 100, 4): row = cifar100_labels[i:i+4] md += "| " + " | ".join(row) + " |\n" return md def battle(user_guess, state): user_score = state["user_score"] ai_score = state["ai_score"] current_image_idx = state["current_image_idx"] played_indices = state["played_indices"] low_res_image, label_idx = cifar100_dataset[current_image_idx] current_label = cifar100_labels[label_idx] ai_guess = predict_ai(low_res_image) if user_guess.lower().strip() == current_label.lower(): user_score += 1 if ai_guess.lower() == current_label.lower(): ai_score += 1 if len(played_indices) >= len(cifar100_dataset): message = f"AI's Guess: '{ai_guess}'\nCorrect Answer: '{current_label}'\n\nAll images have been played! Game Over." next_high_res_image = None else: while True: next_image_idx = random.randint(0, len(cifar100_dataset) - 1) if next_image_idx not in played_indices: break next_low_res_image, _ = cifar100_dataset[next_image_idx] next_high_res_image = upscale_image(next_low_res_image) message = f"AI's Guess: '{ai_guess}'\nCorrect Answer: '{current_label}'" state["current_image_idx"] = next_image_idx played_indices.add(next_image_idx) new_state = { "user_score": user_score, "ai_score": ai_score, "current_image_idx": state["current_image_idx"], "played_indices": played_indices } return user_score, ai_score, message, "", next_high_res_image, new_state def start_game(): if not classifier_model or not sr_model: return 0, 0, "A required AI model failed to load. Please restart.", "", None, {} first_idx = random.randint(0, len(cifar100_dataset) - 1) first_low_res_image, _ = cifar100_dataset[first_idx] first_high_res_image = upscale_image(first_low_res_image) initial_state = { "user_score": 0, "ai_score": 0, "current_image_idx": first_idx, "played_indices": {first_idx} } return 0, 0, "Game Start! What is this high-resolution image?", "", first_high_res_image, initial_state with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="sky")) as demo: state = gr.State() gr.Markdown("

Human vs. AI: Super-Resolution Battle

") gr.Markdown("A Swin2SR AI has upscaled a 32x32 image for you. Can you guess it before the other AI, which only sees the original low-res image?") with gr.Row(): user_score_display = gr.Number(label="Your Score", value=0, interactive=False) ai_score_display = gr.Number(label="AI Score", value=0, interactive=False) with gr.Row(equal_height=False): with gr.Column(scale=2): image_display = gr.Image(label="Guess this upscaled image!", type="pil", height=400, width=400, interactive=False) result_display = gr.Textbox(label="Round Result", interactive=False, lines=3) with gr.Column(scale=1): user_input = gr.Textbox(label="What is this image?", placeholder="e.g., apple, bicycle, cloud...") submit_button = gr.Button("Submit Guess", variant="primary") with gr.Accordion("View All 100 Categories", open=False): gr.Markdown(generate_category_markdown()) submit_button.click(fn=battle, inputs=[user_input, state], outputs=[user_score_display, ai_score_display, result_display, user_input, image_display, state]) user_input.submit(fn=battle, inputs=[user_input, state], outputs=[user_score_display, ai_score_display, result_display, user_input, image_display, state]) demo.load(fn=start_game, inputs=None, outputs=[user_score_display, ai_score_display, result_display, user_input, image_display, state]) if __name__ == "__main__": demo.launch()