Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import cv2 | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import spaces | |
| import torch | |
| import torch.nn.functional as F | |
| from torchvision.transforms import Compose | |
| import tempfile | |
| from gradio_imageslider import ImageSlider | |
| from iebins.networks.NewCRFDepth import NewCRFDepth | |
| from iebins.utils.transfrom import Resize, NormalizeImage, PrepareForNet | |
| css = """ | |
| #img-display-container { | |
| max-height: 100vh; | |
| } | |
| #img-display-input { | |
| max-height: 80vh; | |
| } | |
| #img-display-output { | |
| max-height: 80vh; | |
| } | |
| """ | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| model = NewCRFDepth(version="large07", inv_depth=False, | |
| max_depth=10, pretrained=None).to(DEVICE).eval() | |
| model.load_state_dict(torch.load('checkpoints/nyu_L.pth')) | |
| title = "# IEBins: Iterative Elastic Bins for Monocular Depth Estimation" | |
| description = """Demo for **IEBins: Iterative Elastic Bins for Monocular Depth Estimation**. | |
| Please refer to the [paper](https://arxiv.org/abs/2309.14137), [github](https://github.com/ShuweiShao/IEBins), or [poster](https://nips.cc/media/PosterPDFs/NeurIPS%202023/70695.png?t=1701662442.5228624) for more details.""" | |
| transform = Compose([ | |
| Resize( | |
| width=518, | |
| height=518, | |
| resize_target=False, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=14, | |
| resize_method='lower_bound', | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| PrepareForNet(), | |
| ]) | |
| def predict_depth(model, image): | |
| return model(image) | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| gr.Markdown("### Depth Prediction demo") | |
| gr.Markdown( | |
| "You can slide the output to compare the depth prediction with input image") | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image", | |
| type='numpy', elem_id='img-display-input') | |
| depth_image_slider = ImageSlider( | |
| label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) | |
| raw_file = gr.File( | |
| label="16-bit raw depth (can be considered as disparity)") | |
| submit = gr.Button("Submit") | |
| def on_submit(image): | |
| original_image = image.copy() | |
| h, w = image.shape[:2] | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
| image = transform({'image': image})['image'] | |
| image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) | |
| depth = predict_depth(model, image) | |
| depth = F.interpolate(depth[None], (h, w), | |
| mode='bilinear', align_corners=False)[0, 0] | |
| raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint16')) | |
| tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
| raw_depth.save(tmp.name) | |
| depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| depth = depth.cpu().numpy().astype(np.uint8) | |
| colored_depth = cv2.applyColorMap( | |
| depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] | |
| return [(original_image, colored_depth), tmp.name] | |
| submit.click(on_submit, inputs=[input_image], outputs=[ | |
| depth_image_slider, raw_file]) | |
| example_files = os.listdir('examples') | |
| example_files.sort() | |
| example_files = [os.path.join('examples', filename) | |
| for filename in example_files] | |
| examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[ | |
| depth_image_slider, raw_file], fn=on_submit, cache_examples=False) | |
| if __name__ == '__main__': | |
| demo.queue().launch() | |