Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.backends.cudnn as cudnn | |
| import torch.nn.functional as F | |
| import os, sys | |
| import argparse | |
| import numpy as np | |
| from tqdm import tqdm | |
| from utils import post_process_depth, flip_lr, compute_errors | |
| from networks.NewCRFDepth import NewCRFDepth | |
| def convert_arg_line_to_args(arg_line): | |
| for arg in arg_line.split(): | |
| if not arg.strip(): | |
| continue | |
| yield arg | |
| parser = argparse.ArgumentParser(description='IEbins PyTorch implementation.', fromfile_prefix_chars='@') | |
| parser.convert_arg_line_to_args = convert_arg_line_to_args | |
| parser.add_argument('--model_name', type=str, help='model name', default='iebins') | |
| parser.add_argument('--encoder', type=str, help='type of encoder, base07, large07, tiny07', default='large07') | |
| parser.add_argument('--checkpoint_path', type=str, help='path to a checkpoint to load', default='') | |
| # Dataset | |
| parser.add_argument('--dataset', type=str, help='dataset to train on, kitti or nyu', default='nyu') | |
| parser.add_argument('--input_height', type=int, help='input height', default=480) | |
| parser.add_argument('--input_width', type=int, help='input width', default=640) | |
| parser.add_argument('--max_depth', type=float, help='maximum depth in estimation', default=10) | |
| # Preprocessing | |
| parser.add_argument('--do_random_rotate', help='if set, will perform random rotation for augmentation', action='store_true') | |
| parser.add_argument('--degree', type=float, help='random rotation maximum degree', default=2.5) | |
| parser.add_argument('--do_kb_crop', help='if set, crop input images as kitti benchmark images', action='store_true') | |
| parser.add_argument('--use_right', help='if set, will randomly use right images when train on KITTI', action='store_true') | |
| # Eval | |
| parser.add_argument('--data_path_eval', type=str, help='path to the data for evaluation', required=False) | |
| parser.add_argument('--gt_path_eval', type=str, help='path to the groundtruth data for evaluation', required=False) | |
| parser.add_argument('--filenames_file_eval', type=str, help='path to the filenames text file for evaluation', required=False) | |
| parser.add_argument('--min_depth_eval', type=float, help='minimum depth for evaluation', default=1e-3) | |
| parser.add_argument('--max_depth_eval', type=float, help='maximum depth for evaluation', default=80) | |
| parser.add_argument('--eigen_crop', help='if set, crops according to Eigen NIPS14', action='store_true') | |
| parser.add_argument('--garg_crop', help='if set, crops according to Garg ECCV16', action='store_true') | |
| if sys.argv.__len__() == 2: | |
| arg_filename_with_prefix = '@' + sys.argv[1] | |
| args = parser.parse_args([arg_filename_with_prefix]) | |
| else: | |
| args = parser.parse_args() | |
| if args.dataset == 'nyu': | |
| from dataloaders.dataloader_sun import NewDataLoader | |
| def eval(model, dataloader_eval, post_process=False): | |
| eval_measures = torch.zeros(10).cuda() | |
| for _, eval_sample_batched in enumerate(tqdm(dataloader_eval.data)): | |
| with torch.no_grad(): | |
| image = torch.autograd.Variable(eval_sample_batched['image'].cuda()) | |
| gt_depth = eval_sample_batched['depth'] | |
| has_valid_depth = eval_sample_batched['has_valid_depth'] | |
| if not has_valid_depth: | |
| # print('Invalid depth. continue.') | |
| continue | |
| _, hh, ww, _ = gt_depth.shape | |
| pred_depths_r_list, _, _ = model(image) | |
| if post_process: | |
| image_flipped = flip_lr(image) | |
| pred_depths_r_list_flipped, _, _ = model(image_flipped) | |
| pred_depth = post_process_depth(pred_depths_r_list[-1], pred_depths_r_list_flipped[-1]) | |
| pred_depth = F.interpolate(pred_depth, [hh, ww], mode="bilinear", align_corners=False) | |
| pred_depth = pred_depth.cpu().numpy().squeeze() | |
| gt_depth = gt_depth.cpu().numpy().squeeze() | |
| if args.do_kb_crop: | |
| height, width = gt_depth.shape | |
| top_margin = int(height - 352) | |
| left_margin = int((width - 1216) / 2) | |
| pred_depth_uncropped = np.zeros((height, width), dtype=np.float32) | |
| pred_depth_uncropped[top_margin:top_margin + 352, left_margin:left_margin + 1216] = pred_depth | |
| pred_depth = pred_depth_uncropped | |
| pred_depth[pred_depth < args.min_depth_eval] = args.min_depth_eval | |
| pred_depth[pred_depth > args.max_depth_eval] = args.max_depth_eval | |
| pred_depth[np.isinf(pred_depth)] = args.max_depth_eval | |
| pred_depth[np.isnan(pred_depth)] = args.min_depth_eval | |
| pred_depth[pred_depth > 8] = 8 | |
| gt_depth[gt_depth > 8] = 8 | |
| valid_mask = np.logical_and(gt_depth > args.min_depth_eval, gt_depth < args.max_depth_eval) | |
| if args.garg_crop or args.eigen_crop: | |
| gt_height, gt_width = gt_depth.shape | |
| eval_mask = np.zeros(valid_mask.shape) | |
| if args.garg_crop: | |
| eval_mask[int(0.40810811 * gt_height):int(0.99189189 * gt_height), int(0.03594771 * gt_width):int(0.96405229 * gt_width)] = 1 | |
| elif args.eigen_crop: | |
| if args.dataset == 'kitti': | |
| eval_mask[int(0.3324324 * gt_height):int(0.91351351 * gt_height), int(0.0359477 * gt_width):int(0.96405229 * gt_width)] = 1 | |
| elif args.dataset == 'nyu': | |
| eval_mask[45:471, 41:601] = 1 | |
| valid_mask = np.logical_and(valid_mask, eval_mask) | |
| measures = compute_errors(gt_depth[valid_mask], pred_depth[valid_mask]) | |
| eval_measures[:9] += torch.tensor(measures).cuda() | |
| eval_measures[9] += 1 | |
| eval_measures_cpu = eval_measures.cpu() | |
| cnt = eval_measures_cpu[9].item() | |
| eval_measures_cpu /= cnt | |
| print('Computing errors for {} eval samples'.format(int(cnt)), ', post_process: ', post_process) | |
| print("{:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}, {:>7}".format('silog', 'abs_rel', 'log10', 'rms', | |
| 'sq_rel', 'log_rms', 'd1', 'd2', | |
| 'd3')) | |
| for i in range(8): | |
| print('{:7.4f}, '.format(eval_measures_cpu[i]), end='') | |
| print('{:7.4f}'.format(eval_measures_cpu[8])) | |
| return eval_measures_cpu | |
| def main_worker(args): | |
| # CRF model | |
| model = NewCRFDepth(version=args.encoder, inv_depth=False, max_depth=args.max_depth, pretrained=None) | |
| model.train() | |
| num_params = sum([np.prod(p.size()) for p in model.parameters()]) | |
| print("== Total number of parameters: {}".format(num_params)) | |
| num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad]) | |
| print("== Total number of learning parameters: {}".format(num_params_update)) | |
| model = torch.nn.DataParallel(model) | |
| model.cuda() | |
| print("== Model Initialized") | |
| if args.checkpoint_path != '': | |
| if os.path.isfile(args.checkpoint_path): | |
| print("== Loading checkpoint '{}'".format(args.checkpoint_path)) | |
| checkpoint = torch.load(args.checkpoint_path, map_location='cpu') | |
| model.load_state_dict(checkpoint['model']) | |
| print("== Loaded checkpoint '{}'".format(args.checkpoint_path)) | |
| del checkpoint | |
| else: | |
| print("== No checkpoint found at '{}'".format(args.checkpoint_path)) | |
| cudnn.benchmark = True | |
| dataloader_eval = NewDataLoader(args, 'online_eval') | |
| # ===== Evaluation ====== | |
| model.eval() | |
| with torch.no_grad(): | |
| eval_measures = eval(model, dataloader_eval, post_process=True) | |
| def main(): | |
| torch.cuda.empty_cache() | |
| args.distributed = False | |
| ngpus_per_node = torch.cuda.device_count() | |
| if ngpus_per_node > 1: | |
| print("This machine has more than 1 gpu. Please set \'CUDA_VISIBLE_DEVICES=0\'") | |
| return -1 | |
| main_worker(args) | |
| if __name__ == '__main__': | |
| main() | |