Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						2c2d3cf
	
1
								Parent(s):
							
							7098dbe
								
added licenses and readme
Browse files- .DS_Store +0 -0
- LICENSE +43 -0
- README.md +146 -1
- assets/teaser.jpg +0 -0
- assets/teaser1.jpg +0 -0
    	
        .DS_Store
    CHANGED
    
    | Binary files a/.DS_Store and b/.DS_Store differ | 
|  | 
    	
        LICENSE
    ADDED
    
    | @@ -0,0 +1,43 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            MIT License
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            Copyright (c) 2023 ShuweiShao
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            Permission is hereby granted, free of charge, to any person obtaining a copy
         | 
| 6 | 
            +
            of this software and associated documentation files (the "Software"), to deal
         | 
| 7 | 
            +
            in the Software without restriction, including without limitation the rights
         | 
| 8 | 
            +
            to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         | 
| 9 | 
            +
            copies of the Software, and to permit persons to whom the Software is
         | 
| 10 | 
            +
            furnished to do so, subject to the following conditions:
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            The above copyright notice and this permission notice shall be included in all
         | 
| 13 | 
            +
            copies or substantial portions of the Software.
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         | 
| 16 | 
            +
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         | 
| 17 | 
            +
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         | 
| 18 | 
            +
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         | 
| 19 | 
            +
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         | 
| 20 | 
            +
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
         | 
| 21 | 
            +
            SOFTWARE.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            MIT License
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            Copyright (c) 2024 Umut YILDIRIM <hope@umutyildirim.com>
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            Permission is hereby granted, free of charge, to any person obtaining a copy
         | 
| 28 | 
            +
            of this software and associated documentation files (the "Software"), to deal
         | 
| 29 | 
            +
            in the Software without restriction, including without limitation the rights
         | 
| 30 | 
            +
            to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         | 
| 31 | 
            +
            copies of the Software, and to permit persons to whom the Software is
         | 
| 32 | 
            +
            furnished to do so, subject to the following conditions:
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            The above copyright notice and this permission notice shall be included in all
         | 
| 35 | 
            +
            copies or substantial portions of the Software.
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         | 
| 38 | 
            +
            IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         | 
| 39 | 
            +
            FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         | 
| 40 | 
            +
            AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         | 
| 41 | 
            +
            LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         | 
| 42 | 
            +
            OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
         | 
| 43 | 
            +
            SOFTWARE.
         | 
    	
        README.md
    CHANGED
    
    | @@ -10,4 +10,149 @@ pinned: false | |
| 10 | 
             
            license: mit
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 10 | 
             
            license: mit
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            +
            <div align="center">
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            <h1>IEBins: Iterative Elastic Bins for Monocular Depth Estimation</h1>
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            <div>
         | 
| 18 | 
            +
                <a href='https://scholar.google.com.hk/citations?hl=zh-CN&user=ecZHSVQAAAAJ' target='_blank'>Shuwei Shao</a><sup>1</sup> 
         | 
| 19 | 
            +
                <a target='_blank'>Zhongcai Pei</a><sup>1</sup> 
         | 
| 20 | 
            +
                <a target='_blank'>Xingming Wu</a><sup>1</sup> 
         | 
| 21 | 
            +
                <a target='_blank'>Zhong Liu</a><sup>1</sup> 
         | 
| 22 | 
            +
                <a href='https://scholar.google.com.hk/citations?hl=zh-CN&user=5PoZrcYAAAAJ' target='_blank'>Weihai Chen</a><sup>2</sup> 
         | 
| 23 | 
            +
                <a href='https://scholar.google.com.hk/citations?hl=zh-CN&user=LiUX7WQAAAAJ' target='_blank'>Zhengguo Li</a><sup>3</sup>
         | 
| 24 | 
            +
            </div>
         | 
| 25 | 
            +
            <div>
         | 
| 26 | 
            +
                <sup>1</sup>Beihang University, <sup>2</sup>Anhui University, <sup>3</sup>A*STAR
         | 
| 27 | 
            +
            </div>
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            <div>
         | 
| 30 | 
            +
                <h4 align="center">
         | 
| 31 | 
            +
                    • <a href="https://arxiv.org/abs/2309.14137" target='_blank'>NeurIPS 2023</a> •
         | 
| 32 | 
            +
                </h4>
         | 
| 33 | 
            +
            </div>
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            [](https://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_prediction)
         | 
| 36 | 
            +
            [](umuthopeyildirim/IEBins-Depth-Perception)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            ## Abstract
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            <div style="text-align:center">
         | 
| 41 | 
            +
            <img src="assets/teaser.jpg"  width="80%" height="80%">
         | 
| 42 | 
            +
            </div>
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            </div>
         | 
| 45 | 
            +
            <strong>We propose a novel concept of iterative elastic bins for the classification-regression-based MDE. The proposed IEBins aims to search for high-quality depth by progressively optimizing the search range, which involves multiple stages and each stage performs a finer-grained depth search in the target bin on top of its previous stage. To alleviate the possible error accumulation during the iterative process, we utilize a novel elastic target bin to replace the original target bin, the width of which is adjusted elastically based on the depth uncertainty. </strong>
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            ---
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            </div>
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            ## Installation
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            ```
         | 
| 54 | 
            +
            conda create -n iebins python=3.8
         | 
| 55 | 
            +
            conda activate iebins
         | 
| 56 | 
            +
            conda install pytorch=1.10.0 torchvision cudatoolkit=11.1
         | 
| 57 | 
            +
            pip install matplotlib, tqdm, tensorboardX, timm, mmcv, open3d
         | 
| 58 | 
            +
            ```
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            ## Datasets
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            You can prepare the datasets KITTI and NYUv2 according to [here](https://github.com/cleinc/bts/tree/master/pytorch) and download the SUN RGB-D dataset from [here](https://rgbd.cs.princeton.edu/), and then modify the data path in the config files to your dataset locations.
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            ## Training
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            First download the pretrained encoder backbone from [here](https://github.com/microsoft/Swin-Transformer), and then modify the pretrain path in the config files. If you want to train the KITTI_Official model, first download the pretrained encoder backbone from [here](https://drive.google.com/file/d/1qjDnMwmEz0k0XWh7GP2aNPGiAjvOPF_5/view?usp=drive_link), which is provided by [MIM](https://github.com/SwinTransformer/MIM-Depth-Estimation).
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            Training the NYUv2 model:
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            ```
         | 
| 71 | 
            +
            python iebins/train.py configs/arguments_train_nyu.txt
         | 
| 72 | 
            +
            ```
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            Training the KITTI_Eigen model:
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            ```
         | 
| 77 | 
            +
            python iebins/train.py configs/arguments_train_kittieigen.txt
         | 
| 78 | 
            +
            ```
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            Training the KITTI_Official model:
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            ```
         | 
| 83 | 
            +
            python iebins_kittiofficial/train.py configs/arguments_train_kittiofficial.txt
         | 
| 84 | 
            +
            ```
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            ## Evaluation
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            Evaluate the NYUv2 model:
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            ```
         | 
| 91 | 
            +
            python iebins/eval.py configs/arguments_eval_nyu.txt
         | 
| 92 | 
            +
            ```
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            Evaluate the NYUv2 model on the SUN RGB-D dataset:
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            ```
         | 
| 97 | 
            +
            python iebins/eval_sun.py configs/arguments_eval_sun.txt
         | 
| 98 | 
            +
            ```
         | 
| 99 | 
            +
             | 
| 100 | 
            +
            Evaluate the KITTI_Eigen model:
         | 
| 101 | 
            +
             | 
| 102 | 
            +
            ```
         | 
| 103 | 
            +
            python iebins/eval.py configs/arguments_eval_kittieigen.txt
         | 
| 104 | 
            +
            ```
         | 
| 105 | 
            +
             | 
| 106 | 
            +
            To generate KITTI Online evaluation data for the KITTI_Official model:
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            ```
         | 
| 109 | 
            +
            python iebins_kittiofficial/test.py --data_path path to dataset --filenames_file ./data_splits/kitti_official_test.txt --max_depth 80 --checkpoint_path path to pretrained checkpoint  --dataset kitti --do_kb_crop
         | 
| 110 | 
            +
            ```
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            ## Qualitative Depth and Point Cloud Results
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            You can download the qualitative depth results of [IEBins](https://arxiv.org/abs/2309.14137), [NDDepth](https://arxiv.org/abs/2309.10592), [NeWCRFs](https://openaccess.thecvf.com/content/CVPR2022/html/Yuan_Neural_Window_Fully-Connected_CRFs_for_Monocular_Depth_Estimation_CVPR_2022_paper.html), [PixelFormer](https://openaccess.thecvf.com/content/WACV2023/html/Agarwal_Attention_Attention_Everywhere_Monocular_Depth_Prediction_With_Skip_Attention_WACV_2023_paper.html), [AdaBins](https://openaccess.thecvf.com/content/CVPR2021/html/Bhat_AdaBins_Depth_Estimation_Using_Adaptive_Bins_CVPR_2021_paper.html) and [BTS](https://arxiv.org/abs/1907.10326) on the test sets of NYUv2 and KITTI_Eigen from [here](https://pan.baidu.com/s/1zaFe40mwpQ5cvdDlLZRrCQ?pwd=vfxd) and download the qualitative point cloud results of IEBins, NDDepth, NeWCRFS, PixelFormer, AdaBins and BTS on the NYUv2 test set from [here](https://pan.baidu.com/s/1WwpFuPBGBUaSGPEdThJ6Rw?pwd=n9rw).
         | 
| 115 | 
            +
             | 
| 116 | 
            +
            If you want to derive these results by yourself, please refer to the test.py.
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            If you want to perform inference on a single image, run:
         | 
| 119 | 
            +
             | 
| 120 | 
            +
            ```
         | 
| 121 | 
            +
            python iebins/inference_single_image.py --dataset kitti or nyu --image_path path to image --checkpoint_path path to pretrained checkpoint --max_depth 80 or 10
         | 
| 122 | 
            +
            ```
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            Then you can acquire the qualitative depth result.
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            ## Models
         | 
| 127 | 
            +
             | 
| 128 | 
            +
            | Model                | Abs Rel | Sq Rel | RMSE  |  a1   |  a2   |  a3   |                                                                                 Link                                                                                  |
         | 
| 129 | 
            +
            | -------------------- | :-----: | :----: | :---: | :---: | :---: | :---: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
         | 
| 130 | 
            +
            | NYUv2 (Swin-L)       |  0.087  | 0.040  | 0.314 | 0.936 | 0.992 | 0.998 | [[Google]](https://drive.google.com/file/d/14Rn-vxvpXO2EXRaWqCPmh2JufvOurwtl/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/1E2KAHtQ-ul99RGp_G7QK1w?pwd=7o4d) |
         | 
| 131 | 
            +
            | NYUv2 (Swin-T)       |  0.108  | 0.061  | 0.375 | 0.893 | 0.984 | 0.996 | [[Google]](https://drive.google.com/file/d/1eYkTb3grbDitQ9tJdg1DhAOaGmqgHWHK/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/1v5_MJtP0YOSoark9Yw1RaQ?pwd=2k5d) |
         | 
| 132 | 
            +
            | KITTI_Eigen (Swin-L) |  0.050  | 0.142  | 2.011 | 0.978 | 0.998 | 0.999 | [[Google]](https://drive.google.com/file/d/1xaVLDq7zJ-C2GtFvABolSUtK7gzvNQNd/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/16mRrKrr9PdZhuZ3ZlkmNlA?pwd=lcjd) |
         | 
| 133 | 
            +
            | KITTI_Eigen (Swin-T) |  0.056  | 0.169  | 2.205 | 0.970 | 0.996 | 0.999 | [[Google]](https://drive.google.com/file/d/1s0LXZmS6_Q4_H_0hmbOldPcVhlRw8Dut/view?usp=drive_link) [[Baidu]](https://pan.baidu.com/s/1xgeqIX5WP5F2MFwypMWV5A?pwd=ygfi) |
         | 
| 134 | 
            +
             | 
| 135 | 
            +
            | Model                     | SILog | Abs Rel | Sq Rel | RMSE |  a1   |  a2   |  a3   |                                               Link                                                |
         | 
| 136 | 
            +
            | ------------------------- | :---: | :-----: | :----: | :--: | :---: | :---: | :---: | :-----------------------------------------------------------------------------------------------: |
         | 
| 137 | 
            +
            | KITTI_Official (Swinv2-L) | 7.48  |  5.20   |  0.79  | 2.34 | 0.974 | 0.996 | 0.999 | [[Google]](https://drive.google.com/file/d/19ARBiDTIvtZSWJVvhbEWBcZMonXsiOX1/view?usp=drive_link) |
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            ## Citation
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            If you find our work useful in your research please consider citing our paper:
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            ```
         | 
| 144 | 
            +
            @inproceedings{shao2023IEBins,
         | 
| 145 | 
            +
            title={IEBins: Iterative Elastic Bins for Monocular Depth Estimation},
         | 
| 146 | 
            +
            author={Shao, Shuwei and Pei, Zhongcai and Wu, Xingming and Liu, Zhong and Chen, Weihai and Li, Zhengguo},
         | 
| 147 | 
            +
            booktitle={Advances in Neural Information Processing Systems (NeurIPS)},
         | 
| 148 | 
            +
            year={2023}
         | 
| 149 | 
            +
            }
         | 
| 150 | 
            +
            ```
         | 
| 151 | 
            +
             | 
| 152 | 
            +
            ## Contact
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            If you have any questions, please feel free to contact swshao@buaa.edu.cn.
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            ## Acknowledgement
         | 
| 157 | 
            +
             | 
| 158 | 
            +
            Our code is based on the implementation of [NeWCRFs](https://github.com/aliyun/NeWCRFs) and [BTS](https://github.com/cleinc/bts). We thank their excellent works.
         | 
    	
        assets/teaser.jpg
    ADDED
    
    |   | 
    	
        assets/teaser1.jpg
    ADDED
    
    |   | 
