textgen6b / app.py
un-index
t
a183160
raw
history blame
5.72 kB
from random import randint
from transformers import pipeline, set_seed
import requests
import gradio as gr
import json
# # from transformers import AutoModelForCausalLM, AutoTokenizer
# stage, commit, push
# # prompt = "In a shocking finding, scientists discovered a herd of unicorns living in a remote, " \
# # "previously unexplored valley, in the Andes Mountains. Even more surprising to the " \
# # "researchers was the fact that the unicorns spoke perfect English."
# ex=None
# try:
# from transformers import AutoModelForCausalLM, AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
# # "EluttherAI" on this line and for the next occurence only
# # tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B")
# # model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
# except Exception as e:
# ex = e
temperature = gr.inputs.Slider(
minimum=0, maximum=1.5, default=0.8, label="temperature")
top_p = gr.inputs.Slider(minimum=0, maximum=1.0,
default=0.9, label="top_p")
# gradio checkbutton
generator = pipeline('text-generation', model='gpt2')
title = "GPT-J-6B"
# examples = [
# # another machine learning example
# ["For today's homework assignment, please describe the reasons for the US Civil War."],
# ["In a shocking discovery, scientists have found a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English."],
# ["The first step in the process of developing a new language is to invent a new word."],
# ]
title = "GPT-J-6B"
examples = [
# another machine learning example
[["For today's homework assignment, please describe the reasons for the US Civil War."], 0.8, 0.9, 50, "GPT-2"],
[["In a shocking discovery, scientists have found a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English."], 0.8, 0.9, 50, "GPT-2"],
[["The first step in the process of developing a new language is to invent a new word."], 0.8, 0.9, 50, "GPT-2"],
]
# # # could easily use the inference API in /gptinference.py but don't know if it supports length>250
# set_seed(randint(1, 2**31))
# args found in the source: https://github.com/huggingface/transformers/blob/27b3031de2fb8195dec9bc2093e3e70bdb1c4bff/src/transformers/generation_tf_utils.py#L348-L376
# check if api.vicgalle.net:5000/generate is down with timeout of 10 seconds
def is_up(url):
try:
requests.head(url, timeout=10)
return True
except Exception:
return False
# gpt_j_api_down = False
import os
API_URL = "https://api-inference.huggingface.co/models/EleutherAI/gpt-j-6B"
main_gpt_j_api_up = is_up(API_URL)
secondary_gpt_j_api_up = False
if not main_gpt_j_api_up:
# check whether secondary api is available
API_URL = "https://api.vicgalle.net:5000/generate"
secondary_gpt_j_api_up = is_up(API_URL)
headers = {"Authorization": f"Bearer {os.environ['API_TOKEN']}"}
def f(context, temperature, top_p, max_length, model_idx):
try:
# maybe try "0" instead or 1, or "1"
# use GPT-J-6B
if model_idx == 0:
if main_gpt_j_api_up:
payload = {"inputs": context, "parameters":{
"max_new_tokens":max_length, "temperature":temperature, "top_p":top_p}}
data = json.dumps(payload)
response = requests.request("POST", API_URL, data=data, headers=headers)
generated_text = json.loads(response.content.decode("utf-8"))[0]['generated_text']
return generated_text
if not secondary_gpt_j_api_up:
return "ERR: both GPT-J-6B APIs are down, please try again later (will use a third fallback in the future)"
# use fallback API
#
# http://api.vicgalle.net:5000/docs#/default/generate_generate_post
# https://pythonrepo.com/repo/vicgalle-gpt-j-api-python-natural-language-processing
payload = {
"context": context,
"token_max_length": max_length, # 512,
"temperature": temperature,
"top_p": top_p,
}
response = requests.post(
"http://api.vicgalle.net:5000/generate", params=payload).json()
return response['text']
else:
# use GPT-2
#
set_seed(randint(1, 2**31))
# return sequences specifies how many to return
return generator(context, max_length=max_length, top_p=top_p, temperature=temperature, num_return_sequences=1)[0]['generated-text']
# args found in the source: https://github.com/huggingface/transformers/blob/27b3031de2fb8195dec9bc2093e3e70bdb1c4bff/src/transformers/generation_tf_utils.py#L348-L376
except Exception as e:
return f"error with idx{model_idx} : \n"+str(e)
iface = gr.Interface(f, [
"text",
temperature,
top_p,
gr.inputs.Slider(
minimum=20, maximum=512, default=30, label="max length"),
gr.inputs.Dropdown(["GPT-J-6B", "GPT-2"], type="index", label="model"),
], outputs="text", title=title, examples=examples)
iface.launch() # enable_queue=True
# all below works but testing
# import gradio as gr
# gr.Interface.load("huggingface/EleutherAI/gpt-j-6B",
# inputs=gr.inputs.Textbox(lines=10, label="Input Text"),
# title=title, examples=examples).launch();