Spaces:
Runtime error
Runtime error
Sean Cho
commited on
Commit
Β·
07b29ce
1
Parent(s):
2835e1b
update app
Browse files
app.py
CHANGED
|
@@ -1,7 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from datetime import datetime, timezone
|
| 4 |
+
|
| 5 |
+
|
| 6 |
import gradio as gr
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 10 |
+
from huggingface_hub import HfApi
|
| 11 |
+
from transformers import AutoConfig
|
| 12 |
+
|
| 13 |
+
from src.auto_leaderboard.get_model_metadata import apply_metadata
|
| 14 |
+
from src.assets.text_content import *
|
| 15 |
+
from src.auto_leaderboard.load_results import get_eval_results_dicts, make_clickable_model
|
| 16 |
+
from src.assets.hardcoded_evals import gpt4_values, gpt35_values, baseline
|
| 17 |
+
from src.assets.css_html_js import custom_css, get_window_url_params
|
| 18 |
+
from src.utils_display import AutoEvalColumn, EvalQueueColumn, fields, styled_error, styled_warning, styled_message
|
| 19 |
+
from src.init import get_all_requested_models, load_all_info_from_hub
|
| 20 |
+
|
| 21 |
+
pd.set_option('display.precision', 1)
|
| 22 |
+
|
| 23 |
+
# clone / pull the lmeh eval data
|
| 24 |
+
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
| 25 |
+
|
| 26 |
+
QUEUE_REPO = "open-llm-leaderboard/requests"
|
| 27 |
+
RESULTS_REPO = "open-llm-leaderboard/results"
|
| 28 |
+
|
| 29 |
+
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
|
| 30 |
+
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
|
| 31 |
+
|
| 32 |
+
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
| 33 |
+
|
| 34 |
+
EVAL_REQUESTS_PATH = "eval-queue"
|
| 35 |
+
EVAL_RESULTS_PATH = "eval-results"
|
| 36 |
+
|
| 37 |
+
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
| 38 |
+
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
|
| 39 |
+
|
| 40 |
+
api = HfApi()
|
| 41 |
+
|
| 42 |
+
def restart_space():
|
| 43 |
+
api.restart_space(
|
| 44 |
+
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
eval_queue, requested_models, eval_results = load_all_info_from_hub(QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH)
|
| 48 |
+
|
| 49 |
+
if not IS_PUBLIC:
|
| 50 |
+
eval_queue_private, requested_models_private, eval_results_private = load_all_info_from_hub(PRIVATE_QUEUE_REPO, PRIVATE_RESULTS_REPO, EVAL_REQUESTS_PATH_PRIVATE, EVAL_RESULTS_PATH_PRIVATE)
|
| 51 |
+
else:
|
| 52 |
+
eval_queue_private, eval_results_private = None, None
|
| 53 |
+
|
| 54 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 55 |
+
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
| 56 |
+
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 57 |
+
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
| 58 |
+
|
| 59 |
+
if not IS_PUBLIC:
|
| 60 |
+
COLS.insert(2, AutoEvalColumn.precision.name)
|
| 61 |
+
TYPES.insert(2, AutoEvalColumn.precision.type)
|
| 62 |
+
|
| 63 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
| 64 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 65 |
+
|
| 66 |
+
BENCHMARK_COLS = [c.name for c in [AutoEvalColumn.arc, AutoEvalColumn.hellaswag, AutoEvalColumn.mmlu, AutoEvalColumn.truthfulqa]]
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def has_no_nan_values(df, columns):
|
| 70 |
+
return df[columns].notna().all(axis=1)
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def has_nan_values(df, columns):
|
| 74 |
+
return df[columns].isna().any(axis=1)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_leaderboard_df():
|
| 78 |
+
if eval_results:
|
| 79 |
+
print("Pulling evaluation results for the leaderboard.")
|
| 80 |
+
eval_results.git_pull()
|
| 81 |
+
if eval_results_private:
|
| 82 |
+
print("Pulling evaluation results for the leaderboard.")
|
| 83 |
+
eval_results_private.git_pull()
|
| 84 |
+
|
| 85 |
+
all_data = get_eval_results_dicts(IS_PUBLIC)
|
| 86 |
+
|
| 87 |
+
if not IS_PUBLIC:
|
| 88 |
+
all_data.append(gpt4_values)
|
| 89 |
+
all_data.append(gpt35_values)
|
| 90 |
+
|
| 91 |
+
all_data.append(baseline)
|
| 92 |
+
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
|
| 93 |
+
|
| 94 |
+
df = pd.DataFrame.from_records(all_data)
|
| 95 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 96 |
+
df = df[COLS].round(decimals=2)
|
| 97 |
+
|
| 98 |
+
# filter out if any of the benchmarks have not been produced
|
| 99 |
+
df = df[has_no_nan_values(df, BENCHMARK_COLS)]
|
| 100 |
+
return df
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def get_evaluation_queue_df():
|
| 104 |
+
if eval_queue:
|
| 105 |
+
print("Pulling changes for the evaluation queue.")
|
| 106 |
+
eval_queue.git_pull()
|
| 107 |
+
if eval_queue_private:
|
| 108 |
+
print("Pulling changes for the evaluation queue.")
|
| 109 |
+
eval_queue_private.git_pull()
|
| 110 |
+
|
| 111 |
+
entries = [
|
| 112 |
+
entry
|
| 113 |
+
for entry in os.listdir(EVAL_REQUESTS_PATH)
|
| 114 |
+
if not entry.startswith(".")
|
| 115 |
+
]
|
| 116 |
+
all_evals = []
|
| 117 |
+
|
| 118 |
+
for entry in entries:
|
| 119 |
+
if ".json" in entry:
|
| 120 |
+
file_path = os.path.join(EVAL_REQUESTS_PATH, entry)
|
| 121 |
+
with open(file_path) as fp:
|
| 122 |
+
data = json.load(fp)
|
| 123 |
+
|
| 124 |
+
data["# params"] = "unknown"
|
| 125 |
+
data["model"] = make_clickable_model(data["model"])
|
| 126 |
+
data["revision"] = data.get("revision", "main")
|
| 127 |
+
|
| 128 |
+
all_evals.append(data)
|
| 129 |
+
elif ".md" not in entry:
|
| 130 |
+
# this is a folder
|
| 131 |
+
sub_entries = [
|
| 132 |
+
e
|
| 133 |
+
for e in os.listdir(f"{EVAL_REQUESTS_PATH}/{entry}")
|
| 134 |
+
if not e.startswith(".")
|
| 135 |
+
]
|
| 136 |
+
for sub_entry in sub_entries:
|
| 137 |
+
file_path = os.path.join(EVAL_REQUESTS_PATH, entry, sub_entry)
|
| 138 |
+
with open(file_path) as fp:
|
| 139 |
+
data = json.load(fp)
|
| 140 |
+
|
| 141 |
+
# data["# params"] = get_n_params(data["model"])
|
| 142 |
+
data["model"] = make_clickable_model(data["model"])
|
| 143 |
+
all_evals.append(data)
|
| 144 |
+
|
| 145 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 146 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 147 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
|
| 148 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=EVAL_COLS)
|
| 149 |
+
df_running = pd.DataFrame.from_records(running_list, columns=EVAL_COLS)
|
| 150 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=EVAL_COLS)
|
| 151 |
+
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
original_df = get_leaderboard_df()
|
| 156 |
+
leaderboard_df = original_df.copy()
|
| 157 |
+
(
|
| 158 |
+
finished_eval_queue_df,
|
| 159 |
+
running_eval_queue_df,
|
| 160 |
+
pending_eval_queue_df,
|
| 161 |
+
) = get_evaluation_queue_df()
|
| 162 |
+
|
| 163 |
+
def is_model_on_hub(model_name, revision) -> bool:
|
| 164 |
+
try:
|
| 165 |
+
AutoConfig.from_pretrained(model_name, revision=revision)
|
| 166 |
+
return True, None
|
| 167 |
+
|
| 168 |
+
except ValueError as e:
|
| 169 |
+
return False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard."
|
| 170 |
+
|
| 171 |
+
except Exception as e:
|
| 172 |
+
print(f"Could not get the model config from the hub.: {e}")
|
| 173 |
+
return False, "was not found on hub!"
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def add_new_eval(
|
| 177 |
+
model: str,
|
| 178 |
+
base_model: str,
|
| 179 |
+
revision: str,
|
| 180 |
+
precision: str,
|
| 181 |
+
private: bool,
|
| 182 |
+
weight_type: str,
|
| 183 |
+
model_type: str,
|
| 184 |
+
):
|
| 185 |
+
precision = precision.split(" ")[0]
|
| 186 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
| 187 |
+
|
| 188 |
+
if model_type is None or model_type == "":
|
| 189 |
+
return styled_error("Please select a model type.")
|
| 190 |
+
|
| 191 |
+
# check the model actually exists before adding the eval
|
| 192 |
+
if revision == "":
|
| 193 |
+
revision = "main"
|
| 194 |
+
|
| 195 |
+
if weight_type in ["Delta", "Adapter"]:
|
| 196 |
+
base_model_on_hub, error = is_model_on_hub(base_model, revision)
|
| 197 |
+
if not base_model_on_hub:
|
| 198 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
if not weight_type == "Adapter":
|
| 202 |
+
model_on_hub, error = is_model_on_hub(model, revision)
|
| 203 |
+
if not model_on_hub:
|
| 204 |
+
return styled_error(f'Model "{model}" {error}')
|
| 205 |
+
|
| 206 |
+
print("adding new eval")
|
| 207 |
+
|
| 208 |
+
eval_entry = {
|
| 209 |
+
"model": model,
|
| 210 |
+
"base_model": base_model,
|
| 211 |
+
"revision": revision,
|
| 212 |
+
"private": private,
|
| 213 |
+
"precision": precision,
|
| 214 |
+
"weight_type": weight_type,
|
| 215 |
+
"status": "PENDING",
|
| 216 |
+
"submitted_time": current_time,
|
| 217 |
+
"model_type": model_type,
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
user_name = ""
|
| 221 |
+
model_path = model
|
| 222 |
+
if "/" in model:
|
| 223 |
+
user_name = model.split("/")[0]
|
| 224 |
+
model_path = model.split("/")[1]
|
| 225 |
+
|
| 226 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 227 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
| 228 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
| 229 |
+
|
| 230 |
+
# Check for duplicate submission
|
| 231 |
+
if out_path.split("eval-queue/")[1].lower() in requested_models:
|
| 232 |
+
return styled_warning("This model has been already submitted.")
|
| 233 |
+
|
| 234 |
+
with open(out_path, "w") as f:
|
| 235 |
+
f.write(json.dumps(eval_entry))
|
| 236 |
+
|
| 237 |
+
api.upload_file(
|
| 238 |
+
path_or_fileobj=out_path,
|
| 239 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
| 240 |
+
repo_id=QUEUE_REPO,
|
| 241 |
+
token=H4_TOKEN,
|
| 242 |
+
repo_type="dataset",
|
| 243 |
+
commit_message=f"Add {model} to eval queue",
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# remove the local file
|
| 247 |
+
os.remove(out_path)
|
| 248 |
+
|
| 249 |
+
return styled_message("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list.")
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def refresh():
|
| 253 |
+
leaderboard_df = get_leaderboard_df()
|
| 254 |
+
(
|
| 255 |
+
finished_eval_queue_df,
|
| 256 |
+
running_eval_queue_df,
|
| 257 |
+
pending_eval_queue_df,
|
| 258 |
+
) = get_evaluation_queue_df()
|
| 259 |
+
return (
|
| 260 |
+
leaderboard_df,
|
| 261 |
+
finished_eval_queue_df,
|
| 262 |
+
running_eval_queue_df,
|
| 263 |
+
pending_eval_queue_df,
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def search_table(df, leaderboard_table, query):
|
| 268 |
+
if AutoEvalColumn.model_type.name in leaderboard_table.columns:
|
| 269 |
+
filtered_df = df[
|
| 270 |
+
(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))
|
| 271 |
+
| (df[AutoEvalColumn.model_type.name].str.contains(query, case=False))
|
| 272 |
+
]
|
| 273 |
+
else:
|
| 274 |
+
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
| 275 |
+
return filtered_df[leaderboard_table.columns]
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def select_columns(df, columns):
|
| 279 |
+
always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
|
| 280 |
+
# We use COLS to maintain sorting
|
| 281 |
+
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]]
|
| 282 |
+
return filtered_df
|
| 283 |
+
|
| 284 |
+
#TODO allow this to filter by values of any columns
|
| 285 |
+
def filter_items(df, leaderboard_table, query):
|
| 286 |
+
if query == "all":
|
| 287 |
+
return df[leaderboard_table.columns]
|
| 288 |
+
else:
|
| 289 |
+
query = query[0] #take only the emoji character
|
| 290 |
+
if AutoEvalColumn.model_type_symbol.name in leaderboard_table.columns:
|
| 291 |
+
filtered_df = df[(df[AutoEvalColumn.model_type_symbol.name] == query)]
|
| 292 |
+
else:
|
| 293 |
+
return leaderboard_table.columns
|
| 294 |
+
return filtered_df[leaderboard_table.columns]
|
| 295 |
+
|
| 296 |
+
def change_tab(query_param):
|
| 297 |
+
query_param = query_param.replace("'", '"')
|
| 298 |
+
query_param = json.loads(query_param)
|
| 299 |
+
|
| 300 |
+
if (
|
| 301 |
+
isinstance(query_param, dict)
|
| 302 |
+
and "tab" in query_param
|
| 303 |
+
and query_param["tab"] == "evaluation"
|
| 304 |
+
):
|
| 305 |
+
return gr.Tabs.update(selected=1)
|
| 306 |
+
else:
|
| 307 |
+
return gr.Tabs.update(selected=0)
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
demo = gr.Blocks(css=custom_css)
|
| 311 |
+
with demo:
|
| 312 |
+
gr.HTML(TITLE)
|
| 313 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
| 314 |
+
|
| 315 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 316 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
| 317 |
+
with gr.Row():
|
| 318 |
+
shown_columns = gr.CheckboxGroup(
|
| 319 |
+
choices = [c for c in COLS if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
|
| 320 |
+
value = [c for c in COLS_LITE if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
|
| 321 |
+
label="Select columns to show",
|
| 322 |
+
elem_id="column-select",
|
| 323 |
+
interactive=True,
|
| 324 |
+
)
|
| 325 |
+
with gr.Column(min_width=320):
|
| 326 |
+
search_bar = gr.Textbox(
|
| 327 |
+
placeholder="π Search for your model and press ENTER...",
|
| 328 |
+
show_label=False,
|
| 329 |
+
elem_id="search-bar",
|
| 330 |
+
)
|
| 331 |
+
filter_columns = gr.Radio(
|
| 332 |
+
label="β Filter model types",
|
| 333 |
+
choices = [
|
| 334 |
+
"all",
|
| 335 |
+
ModelType.PT.to_str(),
|
| 336 |
+
ModelType.FT.to_str(),
|
| 337 |
+
ModelType.IFT.to_str(),
|
| 338 |
+
ModelType.RL.to_str(),
|
| 339 |
+
],
|
| 340 |
+
value="all",
|
| 341 |
+
elem_id="filter-columns"
|
| 342 |
+
)
|
| 343 |
+
leaderboard_table = gr.components.Dataframe(
|
| 344 |
+
value=leaderboard_df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value+ [AutoEvalColumn.dummy.name]],
|
| 345 |
+
headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name],
|
| 346 |
+
datatype=TYPES,
|
| 347 |
+
max_rows=None,
|
| 348 |
+
elem_id="leaderboard-table",
|
| 349 |
+
interactive=False,
|
| 350 |
+
visible=True,
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
| 354 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
| 355 |
+
value=original_df,
|
| 356 |
+
headers=COLS,
|
| 357 |
+
datatype=TYPES,
|
| 358 |
+
max_rows=None,
|
| 359 |
+
visible=False,
|
| 360 |
+
)
|
| 361 |
+
search_bar.submit(
|
| 362 |
+
search_table,
|
| 363 |
+
[hidden_leaderboard_table_for_search, leaderboard_table, search_bar],
|
| 364 |
+
leaderboard_table,
|
| 365 |
+
)
|
| 366 |
+
shown_columns.change(select_columns, [hidden_leaderboard_table_for_search, shown_columns], leaderboard_table)
|
| 367 |
+
filter_columns.change(filter_items, [hidden_leaderboard_table_for_search, leaderboard_table, filter_columns], leaderboard_table)
|
| 368 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
| 369 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
| 370 |
+
|
| 371 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
| 372 |
+
with gr.Column():
|
| 373 |
+
with gr.Row():
|
| 374 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
| 375 |
+
|
| 376 |
+
with gr.Column():
|
| 377 |
+
with gr.Accordion(f"β
Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
|
| 378 |
+
with gr.Row():
|
| 379 |
+
finished_eval_table = gr.components.Dataframe(
|
| 380 |
+
value=finished_eval_queue_df,
|
| 381 |
+
headers=EVAL_COLS,
|
| 382 |
+
datatype=EVAL_TYPES,
|
| 383 |
+
max_rows=5,
|
| 384 |
+
)
|
| 385 |
+
with gr.Accordion(f"π Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
|
| 386 |
+
with gr.Row():
|
| 387 |
+
running_eval_table = gr.components.Dataframe(
|
| 388 |
+
value=running_eval_queue_df,
|
| 389 |
+
headers=EVAL_COLS,
|
| 390 |
+
datatype=EVAL_TYPES,
|
| 391 |
+
max_rows=5,
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
with gr.Accordion(f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
|
| 395 |
+
with gr.Row():
|
| 396 |
+
pending_eval_table = gr.components.Dataframe(
|
| 397 |
+
value=pending_eval_queue_df,
|
| 398 |
+
headers=EVAL_COLS,
|
| 399 |
+
datatype=EVAL_TYPES,
|
| 400 |
+
max_rows=5,
|
| 401 |
+
)
|
| 402 |
+
with gr.Row():
|
| 403 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
| 404 |
+
|
| 405 |
+
with gr.Row():
|
| 406 |
+
with gr.Column():
|
| 407 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
| 408 |
+
revision_name_textbox = gr.Textbox(
|
| 409 |
+
label="revision", placeholder="main"
|
| 410 |
+
)
|
| 411 |
+
private = gr.Checkbox(
|
| 412 |
+
False, label="Private", visible=not IS_PUBLIC
|
| 413 |
+
)
|
| 414 |
+
model_type = gr.Dropdown(
|
| 415 |
+
choices=[
|
| 416 |
+
ModelType.PT.to_str(" : "),
|
| 417 |
+
ModelType.FT.to_str(" : "),
|
| 418 |
+
ModelType.IFT.to_str(" : "),
|
| 419 |
+
ModelType.RL.to_str(" : "),
|
| 420 |
+
],
|
| 421 |
+
label="Model type",
|
| 422 |
+
multiselect=False,
|
| 423 |
+
value=None,
|
| 424 |
+
interactive=True,
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
with gr.Column():
|
| 428 |
+
precision = gr.Dropdown(
|
| 429 |
+
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)"],
|
| 430 |
+
label="Precision",
|
| 431 |
+
multiselect=False,
|
| 432 |
+
value="float16",
|
| 433 |
+
interactive=True,
|
| 434 |
+
)
|
| 435 |
+
weight_type = gr.Dropdown(
|
| 436 |
+
choices=["Original", "Delta", "Adapter"],
|
| 437 |
+
label="Weights type",
|
| 438 |
+
multiselect=False,
|
| 439 |
+
value="Original",
|
| 440 |
+
interactive=True,
|
| 441 |
+
)
|
| 442 |
+
base_model_name_textbox = gr.Textbox(
|
| 443 |
+
label="Base model (for delta or adapter weights)"
|
| 444 |
+
)
|
| 445 |
+
|
| 446 |
+
submit_button = gr.Button("Submit Eval")
|
| 447 |
+
submission_result = gr.Markdown()
|
| 448 |
+
submit_button.click(
|
| 449 |
+
add_new_eval,
|
| 450 |
+
[
|
| 451 |
+
model_name_textbox,
|
| 452 |
+
base_model_name_textbox,
|
| 453 |
+
revision_name_textbox,
|
| 454 |
+
precision,
|
| 455 |
+
private,
|
| 456 |
+
weight_type,
|
| 457 |
+
model_type
|
| 458 |
+
],
|
| 459 |
+
submission_result,
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
with gr.Row():
|
| 463 |
+
refresh_button = gr.Button("Refresh")
|
| 464 |
+
refresh_button.click(
|
| 465 |
+
refresh,
|
| 466 |
+
inputs=[],
|
| 467 |
+
outputs=[
|
| 468 |
+
leaderboard_table,
|
| 469 |
+
finished_eval_table,
|
| 470 |
+
running_eval_table,
|
| 471 |
+
pending_eval_table,
|
| 472 |
+
],
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
with gr.Row():
|
| 476 |
+
with gr.Accordion("π Citation", open=False):
|
| 477 |
+
citation_button = gr.Textbox(
|
| 478 |
+
value=CITATION_BUTTON_TEXT,
|
| 479 |
+
label=CITATION_BUTTON_LABEL,
|
| 480 |
+
elem_id="citation-button",
|
| 481 |
+
).style(show_copy_button=True)
|
| 482 |
|
| 483 |
+
dummy = gr.Textbox(visible=False)
|
| 484 |
+
demo.load(
|
| 485 |
+
change_tab,
|
| 486 |
+
dummy,
|
| 487 |
+
tabs,
|
| 488 |
+
_js=get_window_url_params,
|
| 489 |
+
)
|
| 490 |
|
| 491 |
+
scheduler = BackgroundScheduler()
|
| 492 |
+
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 493 |
+
scheduler.start()
|
| 494 |
+
demo.queue(concurrency_count=40).launch()
|