matinsn2000's picture
Added image embedding as playground and roll backed for create_album end point to not use k mean clustring
cbab173
raw
history blame
4.2 kB
"""Semantic search endpoint using FAISS"""
from fastapi import APIRouter, Query, Depends, HTTPException
from sqlmodel import Session, select
import numpy as np
from cloudzy.database import get_session
from cloudzy.models import Photo
from cloudzy.schemas import SearchResponse, SearchResult
from cloudzy.search_engine import SearchEngine
# from cloudzy.ai_utils import generate_filename_embedding
from cloudzy.ai_utils import ImageEmbeddingGenerator
import os
router = APIRouter(tags=["search"])
@router.get("/search", response_model=SearchResponse)
async def search_photos(
q: str = Query(..., min_length=1, max_length=200, description="Search query"),
top_k: int = Query(5, ge=1, le=50, description="Number of results"),
session: Session = Depends(get_session),
):
"""
Semantic search endpoint using FAISS.
Args:
q: Search query (used to generate embedding)
top_k: Number of results to return (max 50)
Returns: List of similar photos
"""
generator = ImageEmbeddingGenerator()
query_embedding = generator._embed_text(q)
search_engine = SearchEngine()
search_results = search_engine.search(query_embedding, top_k=top_k)
if not search_results:
return SearchResponse(
query=q,
results=[],
total_results=0,
)
APP_DOMAIN = os.getenv("APP_DOMAIN")
result_objects = []
for photo_id, distance in search_results:
statement = select(Photo).where(Photo.id == photo_id)
photo = session.exec(statement).first()
if photo:
result_objects.append(
SearchResult(
photo_id=photo.id,
filename=photo.filename,
image_url=f"{APP_DOMAIN}uploads/{photo.filename}",
tags=photo.get_tags(),
caption=photo.caption,
description=photo.description,
distance=distance,
)
)
return SearchResponse(
query=q,
results=result_objects,
total_results=len(result_objects),
)
# @router.post("/search/image-to-image")
# async def image_to_image_search(
# reference_photo_id: int = Query(..., description="Reference photo ID"),
# top_k: int = Query(5, ge=1, le=50),
# session: Session = Depends(get_session),
# ):
# """
# Find similar images to a reference photo (image-to-image search).
# Args:
# reference_photo_id: ID of the reference photo
# top_k: Number of similar results
# Returns: Similar photos
# """
# # Get reference photo
# statement = select(Photo).where(Photo.id == reference_photo_id)
# reference_photo = session.exec(statement).first()
# if not reference_photo:
# raise HTTPException(status_code=404, detail=f"Photo {reference_photo_id} not found")
# # Get reference embedding
# reference_embedding = reference_photo.get_embedding()
# if not reference_embedding:
# raise HTTPException(status_code=400, detail="Photo has no embedding")
# # Search in FAISS
# search_engine = SearchEngine()
# search_results = search_engine.search(
# np.array(reference_embedding, dtype=np.float32),
# top_k=top_k + 1 # +1 to skip the reference photo itself
# )
# # Build results (skip first result which is the reference photo itself)
# result_objects = []
# for photo_id, distance in search_results[1:]: # Skip first result
# statement = select(Photo).where(Photo.id == photo_id)
# photo = session.exec(statement).first()
# if photo:
# result_objects.append(
# SearchResult(
# photo_id=photo.id,
# filename=photo.filename,
# tags=photo.get_tags(),
# caption=photo.caption,
# distance=distance,
# )
# )
# return SearchResponse(
# query=f"Similar to photo {reference_photo_id}",
# results=result_objects[:top_k],
# total_results=len(result_objects),
# )