Spaces:
Running
Running
Commit
·
4d4fccb
1
Parent(s):
fa7dceb
Utilized two models and faliover for retreieving image meta data
Browse files- AI_USAGE_REPORT.txt +88 -311
- app.py +3 -1
- cloudzy/agents/{similar_image_retriever.py → image_analyzer_2.py} +79 -21
- cloudzy/inference_models/text_to_image.py +78 -0
- cloudzy/routes/generate.py +88 -0
- cloudzy/routes/photo.py +1 -1
- cloudzy/routes/search.py +55 -55
- cloudzy/routes/upload.py +30 -14
- cloudzy/schemas.py +8 -1
- cloudzy/search_engine.py +54 -6
AI_USAGE_REPORT.txt
CHANGED
|
@@ -1,359 +1,136 @@
|
|
| 1 |
================================================================================
|
| 2 |
-
AI USAGE REPORT
|
| 3 |
Cloudzy AI Challenge - Photo Album Management System
|
| 4 |
================================================================================
|
| 5 |
|
| 6 |
PROJECT OVERVIEW
|
| 7 |
================
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
users to upload photos, search by similarity, and organize them into meaningful albums
|
| 11 |
-
with AI-generated summaries.
|
| 12 |
|
| 13 |
================================================================================
|
| 14 |
-
|
| 15 |
================================================================================
|
| 16 |
|
| 17 |
-
|
| 18 |
-
Location: cloudzy/ai_utils.py
|
| 19 |
-
Purpose: Convert photo metadata
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
-
-
|
| 24 |
-
-
|
| 25 |
-
-
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
4. Model returns 1024-d embedding vector
|
| 32 |
-
5. Embedding is stored in FAISS index for similarity search
|
| 33 |
|
| 34 |
-
|
| 35 |
-
- cloudzy/
|
| 36 |
-
-
|
| 37 |
-
-
|
| 38 |
-
|
| 39 |
-
B. AI SUMMARY GENERATION
|
| 40 |
-
Location: cloudzy/ai_utils.py - TextSummarizer class
|
| 41 |
-
Purpose: Generate meaningful summaries of photo clusters based on actual photo metadata
|
| 42 |
-
|
| 43 |
-
Model Used:
|
| 44 |
-
- Provider: Hugging Face Hub (InferenceClient)
|
| 45 |
-
- Model Name: facebook/bart-large-cnn
|
| 46 |
-
- Endpoint: summarization
|
| 47 |
-
|
| 48 |
-
How It's Used:
|
| 49 |
-
1. User requests /albums endpoint
|
| 50 |
-
2. System retrieves all photo clusters
|
| 51 |
-
3. For each cluster, collects all captions and tags from photos
|
| 52 |
-
4. Combined metadata is sent to BART summarization model
|
| 53 |
-
5. Model generates concise summary (e.g., "A collection of indoor photos featuring...")
|
| 54 |
-
6. Summary replaces placeholder "Cluster of similar photos" in response
|
| 55 |
-
|
| 56 |
-
Integration Points:
|
| 57 |
-
- cloudzy/routes/photo.py: get_albums() endpoint
|
| 58 |
-
- Response Schema: Pydantic AlbumItem model
|
| 59 |
-
- Fallback: If summarization fails, returns truncated text
|
| 60 |
-
|
| 61 |
-
================================================================================
|
| 62 |
-
2. PROMPTS AND MODEL INPUTS
|
| 63 |
-
================================================================================
|
| 64 |
-
|
| 65 |
-
A. IMAGE EMBEDDING INPUTS
|
| 66 |
-
Raw Input Format:
|
| 67 |
-
tags: List[str] = ["nature", "sunset", "beach"]
|
| 68 |
-
description: str = "A beautiful sunset at the beach with waves"
|
| 69 |
-
caption: str = "Sunset beach scene"
|
| 70 |
-
|
| 71 |
-
Processing:
|
| 72 |
-
Combined Text = " ".join(tags) + " " + description + " " + caption
|
| 73 |
-
Example: "nature sunset beach A beautiful sunset at the beach with waves Sunset beach scene"
|
| 74 |
-
|
| 75 |
-
Model Request (Hugging Face InferenceClient):
|
| 76 |
-
client.feature_extraction(
|
| 77 |
-
text=combined_text,
|
| 78 |
-
model="intfloat/multilingual-e5-large"
|
| 79 |
-
)
|
| 80 |
-
|
| 81 |
-
Expected Output:
|
| 82 |
-
- Type: List of floats (1024 dimensions)
|
| 83 |
-
- Converted to: numpy.ndarray of shape (1024,)
|
| 84 |
-
- Data type: float32
|
| 85 |
-
- Usage: Stored in FAISS index for vector similarity search
|
| 86 |
-
|
| 87 |
-
B. SUMMARIZATION INPUTS
|
| 88 |
-
Raw Input Format:
|
| 89 |
-
For each album cluster, combine all photo metadata:
|
| 90 |
-
texts = []
|
| 91 |
-
for photo in cluster_photos:
|
| 92 |
-
texts.append(photo.caption)
|
| 93 |
-
texts.extend(photo.tags)
|
| 94 |
-
combined_input = " ".join(texts)
|
| 95 |
-
|
| 96 |
-
Example Input:
|
| 97 |
-
"Beach sunset waves ocean Sunset at the ocean view Nature landscape
|
| 98 |
-
Seascape beautiful A sunset scene with ocean waves A scenic beach view"
|
| 99 |
-
|
| 100 |
-
Model Request (Hugging Face InferenceClient):
|
| 101 |
-
client.summarization(
|
| 102 |
-
text=combined_input,
|
| 103 |
-
model="facebook/bart-large-cnn"
|
| 104 |
-
)
|
| 105 |
-
|
| 106 |
-
Expected Output:
|
| 107 |
-
- Type: List containing dictionary with 'summary_text' key
|
| 108 |
-
- Example: "A collection of beach and sunset photographs featuring scenic ocean views"
|
| 109 |
-
- Processing: Extract summary_text from returned object
|
| 110 |
-
- Type Conversion: Ensure string type for Pydantic validation
|
| 111 |
-
|
| 112 |
-
================================================================================
|
| 113 |
-
3. HOW MODEL OUTPUTS WERE REFINED
|
| 114 |
-
================================================================================
|
| 115 |
-
|
| 116 |
-
A. EMBEDDING OUTPUT REFINEMENT
|
| 117 |
-
Issue Encountered:
|
| 118 |
-
- Expected shape: (512,) per documentation
|
| 119 |
-
- Actual shape: (1024,) from model
|
| 120 |
-
- Initial: Validation checked for 1024 but comment said 512
|
| 121 |
-
|
| 122 |
-
Resolution:
|
| 123 |
-
- Updated validation to expect 1024 dimensions (correct model behavior)
|
| 124 |
-
- Converged to: if embedding.shape[0] != 1024: raise ValueError
|
| 125 |
-
- Added type casting: np.array(result, dtype=np.float32).reshape(-1)
|
| 126 |
-
- Reshape(-1) ensures flattening to 1D array
|
| 127 |
-
|
| 128 |
-
Code Refinement (ai_utils.py, lines 50-62):
|
| 129 |
-
def _embed_text(self, text: str) -> np.ndarray:
|
| 130 |
-
result = self.client.feature_extraction(text, model=self.model_name)
|
| 131 |
-
embedding = np.array(result, dtype=np.float32).reshape(-1)
|
| 132 |
-
if embedding.shape[0] != 1024:
|
| 133 |
-
raise ValueError(f"Expected embedding of size 1024, got {embedding.shape[0]}")
|
| 134 |
-
return embedding
|
| 135 |
-
|
| 136 |
-
B. SUMMARIZATION OUTPUT REFINEMENT
|
| 137 |
-
Issue Encountered:
|
| 138 |
-
- Pydantic validation error: "Input should be a valid string"
|
| 139 |
-
- Received: SummarizationOutput object instead of string
|
| 140 |
-
- Root Cause: client.summarization() returns structured object, not string
|
| 141 |
-
|
| 142 |
-
Resolution:
|
| 143 |
-
- Added type-safe extraction logic
|
| 144 |
-
- Implemented multiple fallback formats:
|
| 145 |
-
1. If list: Extract first element's 'summary_text' field
|
| 146 |
-
2. If dict: Get 'summary_text' field directly
|
| 147 |
-
3. Fallback: Convert to string
|
| 148 |
-
|
| 149 |
-
Code Refinement (ai_utils.py, lines 90-100):
|
| 150 |
-
result = self.client.summarization(text, model=self.model_name)
|
| 151 |
-
|
| 152 |
-
# Extract the summary text from the result object
|
| 153 |
-
if isinstance(result, list) and len(result) > 0:
|
| 154 |
-
return result[0].get("summary_text", str(result[0]))
|
| 155 |
-
elif isinstance(result, dict):
|
| 156 |
-
return result.get("summary_text", str(result))
|
| 157 |
-
else:
|
| 158 |
-
return str(result)
|
| 159 |
-
|
| 160 |
-
C. ERROR HANDLING AND DEFAULTS
|
| 161 |
-
Embedding Generation:
|
| 162 |
-
- Validation ensures exact dimension match
|
| 163 |
-
- Raises clear error if dimension mismatch
|
| 164 |
-
- Prevents downstream vector search issues
|
| 165 |
-
|
| 166 |
-
Summarization:
|
| 167 |
-
- Try-except block with graceful fallback
|
| 168 |
-
- Fallback: Returns truncated input (first 80 chars)
|
| 169 |
-
- Empty text handling: Returns default "Album of photos"
|
| 170 |
-
- Ensures robustness when HF API is unavailable
|
| 171 |
|
| 172 |
================================================================================
|
| 173 |
-
|
| 174 |
================================================================================
|
| 175 |
|
| 176 |
-
MANUAL
|
| 177 |
-
|
| 178 |
-
✓
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
✓ API Route Handlers
|
| 183 |
-
- cloudzy/routes/photo.py: All endpoint logic
|
| 184 |
-
- cloudzy/routes/upload.py: File upload handling
|
| 185 |
-
- cloudzy/routes/search.py: Search endpoint implementation
|
| 186 |
-
|
| 187 |
-
✓ File Management
|
| 188 |
-
- cloudzy/utils/file_upload_service.py: Upload service
|
| 189 |
-
- cloudzy/utils/file_utils.py: File utilities
|
| 190 |
-
|
| 191 |
-
✓ Data Serialization
|
| 192 |
-
- cloudzy/schemas.py: Pydantic models and validation
|
| 193 |
-
|
| 194 |
-
✓ Search Engine Implementation
|
| 195 |
-
- cloudzy/search_engine.py: FAISS vector search logic
|
| 196 |
-
- Distance calculation and result ranking
|
| 197 |
-
|
| 198 |
-
✓ Application Configuration
|
| 199 |
-
- app.py: FastAPI app setup
|
| 200 |
-
- Dockerfile: Containerization
|
| 201 |
-
- requirements.txt: Dependencies
|
| 202 |
|
| 203 |
-
HYBRID
|
| 204 |
-
|
| 205 |
-
✓
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
- Manual: Type conversion and reshaping
|
| 209 |
-
- AI: Feature extraction from HF model
|
| 210 |
-
- Result: Text → 1024-d vector embeddings
|
| 211 |
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
- AI: Summary generation from combined text
|
| 218 |
-
- Result: Multi-sentence text → concise summary
|
| 219 |
-
|
| 220 |
-
✓ Album Summary Integration (photo.py)
|
| 221 |
-
- Manual: Cluster iteration and photo data collection
|
| 222 |
-
- Manual: Text concatenation logic
|
| 223 |
-
- Manual: Response structure and schema mapping
|
| 224 |
-
- AI: Summary generation
|
| 225 |
-
- Result: Photo cluster → meaningful album summary
|
| 226 |
-
|
| 227 |
-
AI-GENERATED PARTS
|
| 228 |
-
==================
|
| 229 |
-
✓ Embedding vectors
|
| 230 |
-
- Generated by: intfloat/multilingual-e5-large
|
| 231 |
-
- Content: Semantic representation of photo metadata
|
| 232 |
-
- Used for: Similarity search and clustering
|
| 233 |
-
|
| 234 |
-
✓ Album summaries
|
| 235 |
-
- Generated by: facebook/bart-large-cnn
|
| 236 |
-
- Content: Concise description of photo cluster themes
|
| 237 |
-
- Used for: Album display and description
|
| 238 |
-
|
| 239 |
-
✓ Model-specific responses
|
| 240 |
-
- Output format: Determined by HF models
|
| 241 |
-
- Processing: Handled by manual extraction code
|
| 242 |
|
| 243 |
================================================================================
|
| 244 |
-
|
| 245 |
================================================================================
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
- Reasons:
|
| 250 |
-
* Pre-trained on CNN/DailyMail summarization corpus
|
| 251 |
-
* Optimized for multi-sentence summarization
|
| 252 |
-
* Fast inference through Hugging Face API
|
| 253 |
-
* Produces concise, extractive summaries
|
| 254 |
-
|
| 255 |
-
Alternative considered: facebook/bart-base (smaller, faster but lower quality)
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
* FAISS index configured for 1024-d vectors
|
| 263 |
-
* Updated validation to reflect actual model output
|
| 264 |
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
* Ensures endpoint never fails due to AI API issues
|
| 272 |
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
-
|
| 276 |
-
* Handle both list and dict return formats
|
| 277 |
-
* Extract 'summary_text' field when available
|
| 278 |
-
* Fallback to string conversion
|
| 279 |
-
* Ensures compatibility with different API versions
|
| 280 |
|
| 281 |
================================================================================
|
| 282 |
-
|
| 283 |
================================================================================
|
| 284 |
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
|
|
|
|
|
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
✓ Checked Pydantic schema compliance
|
| 298 |
|
| 299 |
================================================================================
|
| 300 |
-
|
| 301 |
================================================================================
|
| 302 |
|
| 303 |
-
Required
|
| 304 |
-
- HF_TOKEN: Hugging Face API
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
API Access:
|
| 310 |
-
- Provider: Hugging Face Inference API
|
| 311 |
-
- Authentication: Token-based via HF_TOKEN
|
| 312 |
-
- Rate Limiting: Subject to HF plan limits
|
| 313 |
-
- Fallback: When unavailable, gracefully returns truncated text
|
| 314 |
|
| 315 |
================================================================================
|
| 316 |
-
|
| 317 |
================================================================================
|
| 318 |
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
Potential Optimizations:
|
| 325 |
-
✓ Cache summaries in database (reduce API calls)
|
| 326 |
-
✓ Batch embedding generation for multiple uploads
|
| 327 |
-
✓ Implement summary caching with TTL
|
| 328 |
-
✓ Consider async processing for large clusters
|
| 329 |
-
|
| 330 |
-
Current Trade-offs:
|
| 331 |
-
- Speed vs Freshness: Summaries generated on-demand (fresh, slower)
|
| 332 |
-
- Accuracy vs Cost: Full text summarization vs cached summaries
|
| 333 |
|
| 334 |
================================================================================
|
| 335 |
SUMMARY
|
| 336 |
================================================================================
|
| 337 |
|
| 338 |
-
This project
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
4. Flexibility: Handle various model output formats
|
| 344 |
-
5. Validation: Schema validation ensures data integrity
|
| 345 |
-
6. Integration: AI models complement, not replace, core functionality
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
- Automated summary generation (reduces manual effort)
|
| 350 |
-
- Better user experience (meaningful album descriptions)
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
- Error handling and edge cases
|
| 355 |
-
- API integration and data processing
|
| 356 |
-
- Schema definition and validation
|
| 357 |
-
- Deployment and configuration
|
| 358 |
|
| 359 |
================================================================================
|
|
|
|
| 1 |
================================================================================
|
| 2 |
+
AI USAGE REPORT (SUMMARY)
|
| 3 |
Cloudzy AI Challenge - Photo Album Management System
|
| 4 |
================================================================================
|
| 5 |
|
| 6 |
PROJECT OVERVIEW
|
| 7 |
================
|
| 8 |
+
AI-enhanced photo management system with semantic search, album summarization,
|
| 9 |
+
and image generation capabilities.
|
|
|
|
|
|
|
| 10 |
|
| 11 |
================================================================================
|
| 12 |
+
AI MODELS USED
|
| 13 |
================================================================================
|
| 14 |
|
| 15 |
+
1. IMAGE EMBEDDING: intfloat/multilingual-e5-large
|
| 16 |
+
- Location: cloudzy/ai_utils.py (ImageEmbeddingGenerator)
|
| 17 |
+
- Purpose: Convert photo metadata into 1024-d vectors for similarity search
|
| 18 |
+
- Used in: Photo upload, semantic search, album clustering
|
| 19 |
|
| 20 |
+
2. SUMMARIZATION: facebook/bart-large-cnn
|
| 21 |
+
- Location: cloudzy/ai_utils.py (TextSummarizer)
|
| 22 |
+
- Purpose: Generate summaries of photo clusters
|
| 23 |
+
- Used in: /albums endpoint (creates album descriptions)
|
| 24 |
|
| 25 |
+
3. IMAGE ANALYSIS: Google Gemini 2.0-flash
|
| 26 |
+
- Location: cloudzy/agents/image_analyzer_2.py (ImageAnalyzerAgent)
|
| 27 |
+
- Purpose: Analyze images and generate detailed descriptions
|
| 28 |
+
- Used in: /generate-similar-image endpoint (Step 1)
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
4. IMAGE GENERATION: black-forest-labs/FLUX.1-dev
|
| 31 |
+
- Location: cloudzy/inference_models/text_to_image.py (TextToImageGenerator)
|
| 32 |
+
- Purpose: Generate high-quality images from text prompts
|
| 33 |
+
- Used in: /generate-similar-image endpoint (Step 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
================================================================================
|
| 36 |
+
MANUAL VS AI-GENERATED
|
| 37 |
================================================================================
|
| 38 |
|
| 39 |
+
MANUAL WORK (100% Developer-Written):
|
| 40 |
+
✓ Database schema, API routes, file management
|
| 41 |
+
✓ FastAPI application setup and middleware
|
| 42 |
+
✓ Error handling and validation logic
|
| 43 |
+
✓ File upload service and utilities
|
| 44 |
+
✓ FAISS vector search implementation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
HYBRID (Manual Integration + AI Models):
|
| 47 |
+
✓ ImageEmbeddingGenerator: Text → 1024-d embeddings (AI model)
|
| 48 |
+
✓ TextSummarizer: Metadata → album summary (AI model)
|
| 49 |
+
✓ ImageAnalyzerAgent: Image → description (AI model)
|
| 50 |
+
✓ TextToImageGenerator: Prompt → generated image (AI model)
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
AI-GENERATED CONTENT:
|
| 53 |
+
✓ Embedding vectors (semantic representations)
|
| 54 |
+
✓ Album summaries (cluster descriptions)
|
| 55 |
+
✓ Image descriptions (visual analysis)
|
| 56 |
+
✓ Generated images (from text prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
================================================================================
|
| 59 |
+
NEW ENDPOINT: /generate-similar-image
|
| 60 |
================================================================================
|
| 61 |
|
| 62 |
+
Endpoint: POST /generate-similar-image
|
| 63 |
+
Location: cloudzy/routes/generate.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
Workflow:
|
| 66 |
+
1. User uploads an image
|
| 67 |
+
2. ImageAnalyzerAgent analyzes it → gets description
|
| 68 |
+
3. TextToImageGenerator creates new image from description
|
| 69 |
+
4. Returns generated image URL + description
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
Response:
|
| 72 |
+
{
|
| 73 |
+
"description": "Detailed image analysis from Gemini",
|
| 74 |
+
"generated_image_url": "http://127.0.0.1:8000/uploads/generated_20241025_123456_789.png",
|
| 75 |
+
"message": "Similar image generated successfully"
|
| 76 |
+
}
|
|
|
|
| 77 |
|
| 78 |
+
Performance: ~40-75 seconds per request
|
| 79 |
+
- Image analysis: ~5-10s (Gemini)
|
| 80 |
+
- Image generation: ~30-60s (FLUX.1-dev)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
================================================================================
|
| 83 |
+
PROMPTS USED IN PROJECT
|
| 84 |
================================================================================
|
| 85 |
|
| 86 |
+
1. IMAGE ANALYSIS PROMPT (ImageAnalyzerAgent - Gemini):
|
| 87 |
+
Location: cloudzy/agents/image_analyzer_2.py
|
| 88 |
+
|
| 89 |
+
"Describe this image in a way that could be used as a prompt for generating
|
| 90 |
+
a new image inspired by it. Focus on the main subjects, composition, style,
|
| 91 |
+
mood, and colors. Avoid mentioning specific names or exact details — instead,
|
| 92 |
+
describe the overall aesthetic and atmosphere so the result feels similar but
|
| 93 |
+
not identical."
|
| 94 |
|
| 95 |
+
2. IMAGE GENERATION PROMPT:
|
| 96 |
+
- Input: Description from ImageAnalyzerAgent (above)
|
| 97 |
+
- Model: FLUX.1-dev (black-forest-labs/FLUX.1-dev)
|
| 98 |
+
- Location: cloudzy/inference_models/text_to_image.py
|
| 99 |
+
- Strategy: Direct prompt passing to image generation model
|
|
|
|
| 100 |
|
| 101 |
================================================================================
|
| 102 |
+
ENVIRONMENT VARIABLES
|
| 103 |
================================================================================
|
| 104 |
|
| 105 |
+
Required:
|
| 106 |
+
- HF_TOKEN: Hugging Face API key (embeddings, summarization)
|
| 107 |
+
- GEMINI_API_KEY: Google Gemini API key (image analysis)
|
| 108 |
+
- HF_TOKEN_1: Alternative HF token (image generation)
|
| 109 |
+
- APP_DOMAIN: App URL (default: http://127.0.0.1:8000/)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
================================================================================
|
| 112 |
+
KEY DECISIONS
|
| 113 |
================================================================================
|
| 114 |
|
| 115 |
+
1. Used FLUX.1-dev for high-quality image generation (vs Stable Diffusion)
|
| 116 |
+
2. Composable pipeline: ImageAnalyzer → TextToImageGenerator (reusable components)
|
| 117 |
+
3. Graceful error handling with fallbacks when APIs unavailable
|
| 118 |
+
4. Temporary file handling: saves uploads locally for Gemini analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
================================================================================
|
| 121 |
SUMMARY
|
| 122 |
================================================================================
|
| 123 |
|
| 124 |
+
This project integrates 4 AI models responsibly:
|
| 125 |
+
- Embeddings for semantic search
|
| 126 |
+
- Summarization for album descriptions
|
| 127 |
+
- Vision AI for image analysis
|
| 128 |
+
- Generative AI for image creation
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
All manual work handles infrastructure, logic, validation, and error handling.
|
| 131 |
+
AI models are called for their specialized tasks only.
|
|
|
|
|
|
|
| 132 |
|
| 133 |
+
New capability: Generate creative image variations from uploaded photos using
|
| 134 |
+
intelligent analysis + high-quality generation pipeline.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
================================================================================
|
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from fastapi.staticfiles import StaticFiles
|
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
|
| 8 |
from cloudzy.database import create_db_and_tables
|
| 9 |
-
from cloudzy.routes import upload, photo, search
|
| 10 |
from cloudzy.search_engine import SearchEngine
|
| 11 |
import os
|
| 12 |
|
|
@@ -55,6 +55,7 @@ app.add_middleware(
|
|
| 55 |
app.include_router(upload.router)
|
| 56 |
app.include_router(photo.router)
|
| 57 |
app.include_router(search.router)
|
|
|
|
| 58 |
|
| 59 |
UPLOAD_DIR = os.path.join(os.getcwd(), "uploads")
|
| 60 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
|
@@ -76,6 +77,7 @@ async def root():
|
|
| 76 |
"list_photos": "GET /photos - List all photos",
|
| 77 |
"search": "GET /search?q=... - Semantic search",
|
| 78 |
"image_to_image": "POST /search/image-to-image - Similar images",
|
|
|
|
| 79 |
"docs": "/docs - Interactive API documentation",
|
| 80 |
}
|
| 81 |
}
|
|
|
|
| 6 |
from dotenv import load_dotenv
|
| 7 |
|
| 8 |
from cloudzy.database import create_db_and_tables
|
| 9 |
+
from cloudzy.routes import upload, photo, search, generate
|
| 10 |
from cloudzy.search_engine import SearchEngine
|
| 11 |
import os
|
| 12 |
|
|
|
|
| 55 |
app.include_router(upload.router)
|
| 56 |
app.include_router(photo.router)
|
| 57 |
app.include_router(search.router)
|
| 58 |
+
app.include_router(generate.router)
|
| 59 |
|
| 60 |
UPLOAD_DIR = os.path.join(os.getcwd(), "uploads")
|
| 61 |
os.makedirs(UPLOAD_DIR, exist_ok=True)
|
|
|
|
| 77 |
"list_photos": "GET /photos - List all photos",
|
| 78 |
"search": "GET /search?q=... - Semantic search",
|
| 79 |
"image_to_image": "POST /search/image-to-image - Similar images",
|
| 80 |
+
"generate_similar": "POST /generate-similar-image - Generate image from description",
|
| 81 |
"docs": "/docs - Interactive API documentation",
|
| 82 |
}
|
| 83 |
}
|
cloudzy/agents/{similar_image_retriever.py → image_analyzer_2.py}
RENAMED
|
@@ -3,12 +3,14 @@ from pathlib import Path
|
|
| 3 |
from PIL import Image
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import os
|
|
|
|
|
|
|
| 6 |
|
| 7 |
load_dotenv()
|
| 8 |
|
| 9 |
|
| 10 |
class ImageAnalyzerAgent:
|
| 11 |
-
"""Agent for
|
| 12 |
|
| 13 |
def __init__(self):
|
| 14 |
"""Initialize the agent with Gemini configuration"""
|
|
@@ -28,42 +30,93 @@ class ImageAnalyzerAgent:
|
|
| 28 |
self.agent = CodeAgent(
|
| 29 |
tools=[],
|
| 30 |
model=self.model,
|
| 31 |
-
max_steps=
|
| 32 |
-
verbosity_level=
|
| 33 |
)
|
| 34 |
|
| 35 |
-
def
|
| 36 |
"""
|
| 37 |
-
|
| 38 |
|
| 39 |
Args:
|
| 40 |
-
|
| 41 |
|
| 42 |
Returns:
|
| 43 |
-
|
| 44 |
"""
|
| 45 |
-
|
| 46 |
-
image_paths = [Path(path) if isinstance(path, str) else path for path in image_paths]
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
if not images:
|
| 54 |
-
print("No images found. Please provide valid image paths.")
|
| 55 |
-
return None
|
| 56 |
|
| 57 |
response = self.agent.run(
|
| 58 |
"""
|
| 59 |
-
Describe
|
|
|
|
|
|
|
| 60 |
""",
|
| 61 |
-
images=
|
| 62 |
)
|
| 63 |
|
| 64 |
-
print("\n=== Agent Response ===")
|
| 65 |
-
print(response)
|
| 66 |
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
# Test with sample images
|
|
@@ -76,4 +129,9 @@ if __name__ == "__main__":
|
|
| 76 |
]
|
| 77 |
|
| 78 |
agent = ImageAnalyzerAgent()
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
import os
|
| 6 |
+
import json
|
| 7 |
+
import re
|
| 8 |
|
| 9 |
load_dotenv()
|
| 10 |
|
| 11 |
|
| 12 |
class ImageAnalyzerAgent:
|
| 13 |
+
"""Agent for describing images using Gemini with smolagents"""
|
| 14 |
|
| 15 |
def __init__(self):
|
| 16 |
"""Initialize the agent with Gemini configuration"""
|
|
|
|
| 30 |
self.agent = CodeAgent(
|
| 31 |
tools=[],
|
| 32 |
model=self.model,
|
| 33 |
+
max_steps=5,
|
| 34 |
+
verbosity_level=1
|
| 35 |
)
|
| 36 |
|
| 37 |
+
def retrieve_similar_images(self, image_path):
|
| 38 |
"""
|
| 39 |
+
Describe a given image.
|
| 40 |
|
| 41 |
Args:
|
| 42 |
+
image_path: Path object or string pointing to an image file
|
| 43 |
|
| 44 |
Returns:
|
| 45 |
+
Description text of the image
|
| 46 |
"""
|
| 47 |
+
image_path = Path(image_path) if isinstance(image_path, str) else image_path
|
|
|
|
| 48 |
|
| 49 |
+
if not image_path.exists():
|
| 50 |
+
raise FileNotFoundError(f"Image not found at {image_path}")
|
| 51 |
|
| 52 |
+
image = Image.open(image_path)
|
| 53 |
+
print(f"Loaded image: {image_path.name}\n")
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
response = self.agent.run(
|
| 56 |
"""
|
| 57 |
+
Describe this image in a way that could be used as a prompt for generating a new image inspired by it.
|
| 58 |
+
Focus on the main subjects, composition, style, mood, and colors.
|
| 59 |
+
Avoid mentioning specific names or exact details — instead, describe the overall aesthetic and atmosphere so the result feels similar but not identical.
|
| 60 |
""",
|
| 61 |
+
images=[image]
|
| 62 |
)
|
| 63 |
|
|
|
|
|
|
|
| 64 |
return response
|
| 65 |
+
|
| 66 |
+
def analyze_image_metadata(self, image_path):
|
| 67 |
+
"""
|
| 68 |
+
Analyze an image and extract structured metadata (tags, description, caption).
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
image_path: Path object or string pointing to an image file
|
| 72 |
+
|
| 73 |
+
Returns:
|
| 74 |
+
Dictionary with keys: tags (list), description (str), caption (str)
|
| 75 |
+
|
| 76 |
+
Raises:
|
| 77 |
+
FileNotFoundError: If image file doesn't exist
|
| 78 |
+
ValueError: If response cannot be parsed into valid JSON
|
| 79 |
+
"""
|
| 80 |
+
image_path = Path(image_path) if isinstance(image_path, str) else image_path
|
| 81 |
+
|
| 82 |
+
if not image_path.exists():
|
| 83 |
+
raise FileNotFoundError(f"Image not found at {image_path}")
|
| 84 |
+
|
| 85 |
+
image = Image.open(image_path)
|
| 86 |
+
print(f"Loaded image: {image_path.name}\n")
|
| 87 |
+
|
| 88 |
+
prompt = """
|
| 89 |
+
Describe this image in the following exact format:
|
| 90 |
+
|
| 91 |
+
result: {
|
| 92 |
+
"tags": [list of tags related to the image],
|
| 93 |
+
"description": "a 5-line descriptive description for the image",
|
| 94 |
+
"caption": "a short description for the image"
|
| 95 |
+
}
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
response = self.agent.run(prompt, images=[image])
|
| 99 |
+
|
| 100 |
+
# Handle both dict and string responses
|
| 101 |
+
if isinstance(response, dict):
|
| 102 |
+
# Response is already a dictionary
|
| 103 |
+
return response
|
| 104 |
+
|
| 105 |
+
# If response is a string, extract JSON part
|
| 106 |
+
# Look for the pattern: result: { ... }
|
| 107 |
+
match = re.search(r'result:\s*(\{[\s\S]*\})', response)
|
| 108 |
+
|
| 109 |
+
if not match:
|
| 110 |
+
raise ValueError(f"Could not find JSON in response: {response}")
|
| 111 |
+
|
| 112 |
+
json_str = match.group(1)
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
# Parse the JSON string into a dictionary
|
| 116 |
+
result_dict = json.loads(json_str)
|
| 117 |
+
return result_dict
|
| 118 |
+
except json.JSONDecodeError as e:
|
| 119 |
+
raise ValueError(f"Failed to parse JSON from response: {json_str}\nError: {str(e)}")
|
| 120 |
|
| 121 |
|
| 122 |
# Test with sample images
|
|
|
|
| 129 |
]
|
| 130 |
|
| 131 |
agent = ImageAnalyzerAgent()
|
| 132 |
+
|
| 133 |
+
# Test with first sample image
|
| 134 |
+
result = agent.analyze_image_metadata(sample_image_paths[0])
|
| 135 |
+
print(f"\n=== Results ===")
|
| 136 |
+
print(f"Description: {result}")
|
| 137 |
+
# print(f"Similar images found: {len(result['similar_images'])}")
|
cloudzy/inference_models/text_to_image.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from datetime import datetime
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from huggingface_hub import InferenceClient
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
|
| 7 |
+
load_dotenv()
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class TextToImageGenerator:
|
| 11 |
+
"""Class for generating images from text prompts using HuggingFace models"""
|
| 12 |
+
|
| 13 |
+
def __init__(self, model_id: str = "black-forest-labs/FLUX.1-dev", provider: str = "nebius"):
|
| 14 |
+
"""
|
| 15 |
+
Initialize the text-to-image generator.
|
| 16 |
+
|
| 17 |
+
Args:
|
| 18 |
+
model_id: HuggingFace model ID (default: FLUX.1-dev for high quality)
|
| 19 |
+
provider: API provider (default: nebius)
|
| 20 |
+
"""
|
| 21 |
+
api_key = os.getenv("HF_TOKEN_1")
|
| 22 |
+
if not api_key:
|
| 23 |
+
raise ValueError("HF_TOKEN_1 not found in environment variables")
|
| 24 |
+
|
| 25 |
+
self.client = InferenceClient(
|
| 26 |
+
provider=provider,
|
| 27 |
+
api_key=api_key,
|
| 28 |
+
)
|
| 29 |
+
self.model_id = model_id
|
| 30 |
+
self.uploads_dir = Path(__file__).parent.parent.parent / "uploads"
|
| 31 |
+
self.uploads_dir.mkdir(exist_ok=True)
|
| 32 |
+
|
| 33 |
+
self.app_domain = os.getenv("APP_DOMAIN", "http://127.0.0.1:8000/")
|
| 34 |
+
|
| 35 |
+
def generate(self, prompt: str) -> str:
|
| 36 |
+
"""
|
| 37 |
+
Generate an image from a text prompt and save it to the uploads folder.
|
| 38 |
+
|
| 39 |
+
Args:
|
| 40 |
+
prompt: Text description of the image to generate
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
URL of the generated image in format: {APP_DOMAIN}uploads/{filename}
|
| 44 |
+
"""
|
| 45 |
+
if not prompt or not prompt.strip():
|
| 46 |
+
raise ValueError("Prompt cannot be empty")
|
| 47 |
+
|
| 48 |
+
try:
|
| 49 |
+
# Generate image using HuggingFace inference
|
| 50 |
+
image = self.client.text_to_image(
|
| 51 |
+
prompt,
|
| 52 |
+
model=self.model_id,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Create filename with timestamp
|
| 56 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3]
|
| 57 |
+
filename = f"generated_{timestamp}.png"
|
| 58 |
+
filepath = self.uploads_dir / filename
|
| 59 |
+
|
| 60 |
+
# Save image
|
| 61 |
+
image.save(filepath)
|
| 62 |
+
|
| 63 |
+
# Return URL in the required format
|
| 64 |
+
image_url = f"{self.app_domain}uploads/{filename}"
|
| 65 |
+
return image_url
|
| 66 |
+
|
| 67 |
+
except Exception as e:
|
| 68 |
+
raise RuntimeError(f"Failed to generate image: {str(e)}") from e
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Test with sample prompt
|
| 72 |
+
if __name__ == "__main__":
|
| 73 |
+
generator = TextToImageGenerator()
|
| 74 |
+
|
| 75 |
+
# Test with a sample prompt
|
| 76 |
+
prompt = "A beautiful sunset over mountains with birds flying"
|
| 77 |
+
url = generator.generate(prompt)
|
| 78 |
+
print(f"Generated image URL: {url}")
|
cloudzy/routes/generate.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Generate endpoint for creating similar images"""
|
| 2 |
+
from fastapi import APIRouter, UploadFile, File, HTTPException
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
from cloudzy.agents.image_analyzer_2 import ImageAnalyzerAgent
|
| 7 |
+
from cloudzy.inference_models.text_to_image import TextToImageGenerator
|
| 8 |
+
from cloudzy.utils.file_utils import save_uploaded_file
|
| 9 |
+
from cloudzy.schemas import GenerateImageResponse
|
| 10 |
+
|
| 11 |
+
router = APIRouter(tags=["generate"])
|
| 12 |
+
|
| 13 |
+
# Allowed image extensions
|
| 14 |
+
ALLOWED_EXTENSIONS = {".jpg", ".jpeg", ".png", ".gif", ".webp"}
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def validate_image_file(filename: str) -> bool:
|
| 18 |
+
"""Check if file has valid image extension"""
|
| 19 |
+
return Path(filename).suffix.lower() in ALLOWED_EXTENSIONS
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
@router.post("/generate-similar-image", response_model=GenerateImageResponse)
|
| 23 |
+
async def generate_similar_image(
|
| 24 |
+
file: UploadFile = File(...),
|
| 25 |
+
):
|
| 26 |
+
"""
|
| 27 |
+
Generate a similar image from an input image.
|
| 28 |
+
|
| 29 |
+
This endpoint:
|
| 30 |
+
1. Takes an image as input
|
| 31 |
+
2. Analyzes the image to get a description using ImageAnalyzerAgent
|
| 32 |
+
3. Uses the description to generate a new image via TextToImageGenerator
|
| 33 |
+
4. Returns the URL of the generated image
|
| 34 |
+
|
| 35 |
+
Args:
|
| 36 |
+
file: The input image file
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
GenerateImageResponse with the generated image URL and description
|
| 40 |
+
"""
|
| 41 |
+
# --- Validate file ---
|
| 42 |
+
if not file.filename:
|
| 43 |
+
raise HTTPException(status_code=400, detail="No filename provided")
|
| 44 |
+
|
| 45 |
+
if not validate_image_file(file.filename):
|
| 46 |
+
raise HTTPException(
|
| 47 |
+
status_code=400,
|
| 48 |
+
detail=f"Invalid file type. Allowed: {', '.join(ALLOWED_EXTENSIONS)}"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
content = await file.read()
|
| 52 |
+
if not content:
|
| 53 |
+
raise HTTPException(status_code=400, detail="Empty file")
|
| 54 |
+
|
| 55 |
+
# --- Save uploaded file temporarily ---
|
| 56 |
+
try:
|
| 57 |
+
saved_filename = save_uploaded_file(content, file.filename)
|
| 58 |
+
filepath = Path(__file__).parent.parent.parent / "uploads" / saved_filename
|
| 59 |
+
except Exception as e:
|
| 60 |
+
raise HTTPException(status_code=500, detail=f"Failed to save file: {str(e)}")
|
| 61 |
+
|
| 62 |
+
# --- Step 1: Analyze image and get description ---
|
| 63 |
+
try:
|
| 64 |
+
analyzer = ImageAnalyzerAgent()
|
| 65 |
+
description = analyzer.retrieve_similar_images(filepath)
|
| 66 |
+
print(f"Generated description: {description}")
|
| 67 |
+
except Exception as e:
|
| 68 |
+
raise HTTPException(
|
| 69 |
+
status_code=500,
|
| 70 |
+
detail=f"Failed to analyze image: {str(e)}"
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# --- Step 2: Generate image from description ---
|
| 74 |
+
try:
|
| 75 |
+
generator = TextToImageGenerator()
|
| 76 |
+
generated_image_url = generator.generate(description)
|
| 77 |
+
print(f"Generated image URL: {generated_image_url}")
|
| 78 |
+
except Exception as e:
|
| 79 |
+
raise HTTPException(
|
| 80 |
+
status_code=500,
|
| 81 |
+
detail=f"Failed to generate image: {str(e)}"
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
return GenerateImageResponse(
|
| 85 |
+
description=description,
|
| 86 |
+
generated_image_url=generated_image_url,
|
| 87 |
+
message="Similar image generated successfully"
|
| 88 |
+
)
|
cloudzy/routes/photo.py
CHANGED
|
@@ -81,7 +81,7 @@ async def list_photos(
|
|
| 81 |
|
| 82 |
@router.get("/albums", response_model=AlbumsResponse)
|
| 83 |
async def get_albums(
|
| 84 |
-
top_k: int = Query(5, ge=
|
| 85 |
session: Session = Depends(get_session),
|
| 86 |
):
|
| 87 |
"""
|
|
|
|
| 81 |
|
| 82 |
@router.get("/albums", response_model=AlbumsResponse)
|
| 83 |
async def get_albums(
|
| 84 |
+
top_k: int = Query(5, ge=1, le=5),
|
| 85 |
session: Session = Depends(get_session),
|
| 86 |
):
|
| 87 |
"""
|
cloudzy/routes/search.py
CHANGED
|
@@ -78,59 +78,59 @@ async def search_photos(
|
|
| 78 |
)
|
| 79 |
|
| 80 |
|
| 81 |
-
@router.post("/search/image-to-image")
|
| 82 |
-
async def image_to_image_search(
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
):
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
|
| 81 |
+
# @router.post("/search/image-to-image")
|
| 82 |
+
# async def image_to_image_search(
|
| 83 |
+
# reference_photo_id: int = Query(..., description="Reference photo ID"),
|
| 84 |
+
# top_k: int = Query(5, ge=1, le=50),
|
| 85 |
+
# session: Session = Depends(get_session),
|
| 86 |
+
# ):
|
| 87 |
+
# """
|
| 88 |
+
# Find similar images to a reference photo (image-to-image search).
|
| 89 |
+
|
| 90 |
+
# Args:
|
| 91 |
+
# reference_photo_id: ID of the reference photo
|
| 92 |
+
# top_k: Number of similar results
|
| 93 |
+
|
| 94 |
+
# Returns: Similar photos
|
| 95 |
+
# """
|
| 96 |
+
# # Get reference photo
|
| 97 |
+
# statement = select(Photo).where(Photo.id == reference_photo_id)
|
| 98 |
+
# reference_photo = session.exec(statement).first()
|
| 99 |
+
|
| 100 |
+
# if not reference_photo:
|
| 101 |
+
# raise HTTPException(status_code=404, detail=f"Photo {reference_photo_id} not found")
|
| 102 |
+
|
| 103 |
+
# # Get reference embedding
|
| 104 |
+
# reference_embedding = reference_photo.get_embedding()
|
| 105 |
+
# if not reference_embedding:
|
| 106 |
+
# raise HTTPException(status_code=400, detail="Photo has no embedding")
|
| 107 |
+
|
| 108 |
+
# # Search in FAISS
|
| 109 |
+
# search_engine = SearchEngine()
|
| 110 |
+
# search_results = search_engine.search(
|
| 111 |
+
# np.array(reference_embedding, dtype=np.float32),
|
| 112 |
+
# top_k=top_k + 1 # +1 to skip the reference photo itself
|
| 113 |
+
# )
|
| 114 |
+
|
| 115 |
+
# # Build results (skip first result which is the reference photo itself)
|
| 116 |
+
# result_objects = []
|
| 117 |
+
# for photo_id, distance in search_results[1:]: # Skip first result
|
| 118 |
+
# statement = select(Photo).where(Photo.id == photo_id)
|
| 119 |
+
# photo = session.exec(statement).first()
|
| 120 |
|
| 121 |
+
# if photo:
|
| 122 |
+
# result_objects.append(
|
| 123 |
+
# SearchResult(
|
| 124 |
+
# photo_id=photo.id,
|
| 125 |
+
# filename=photo.filename,
|
| 126 |
+
# tags=photo.get_tags(),
|
| 127 |
+
# caption=photo.caption,
|
| 128 |
+
# distance=distance,
|
| 129 |
+
# )
|
| 130 |
+
# )
|
| 131 |
+
|
| 132 |
+
# return SearchResponse(
|
| 133 |
+
# query=f"Similar to photo {reference_photo_id}",
|
| 134 |
+
# results=result_objects[:top_k],
|
| 135 |
+
# total_results=len(result_objects),
|
| 136 |
+
# )
|
cloudzy/routes/upload.py
CHANGED
|
@@ -12,6 +12,7 @@ from cloudzy.ai_utils import ImageEmbeddingGenerator
|
|
| 12 |
from cloudzy.search_engine import SearchEngine
|
| 13 |
|
| 14 |
from cloudzy.agents.image_analyzer import ImageDescriber
|
|
|
|
| 15 |
from cloudzy.utils.file_upload_service import ImgBBUploader
|
| 16 |
|
| 17 |
|
|
@@ -62,10 +63,11 @@ def validate_image_file(filename: str) -> bool:
|
|
| 62 |
"""Check if file has valid image extension"""
|
| 63 |
return Path(filename).suffix.lower() in ALLOWED_EXTENSIONS
|
| 64 |
|
| 65 |
-
def process_image_in_background(photo_id: int, filepath: str
|
| 66 |
"""
|
| 67 |
Background task to:
|
| 68 |
-
-
|
|
|
|
| 69 |
- Generate embedding
|
| 70 |
- Update database record
|
| 71 |
- Index embedding in FAISS
|
|
@@ -74,9 +76,30 @@ def process_image_in_background(photo_id: int, filepath: str, image_url: str):
|
|
| 74 |
from sqlmodel import select
|
| 75 |
|
| 76 |
try:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
tags = result.get("tags", [])
|
| 82 |
caption = result.get("caption", "")
|
|
@@ -135,12 +158,6 @@ async def upload_photo(
|
|
| 135 |
saved_filename = save_uploaded_file(content, file.filename)
|
| 136 |
filepath = f"uploads/{saved_filename}"
|
| 137 |
|
| 138 |
-
try:
|
| 139 |
-
uploader = ImgBBUploader(expiration=600)
|
| 140 |
-
image_url = uploader.upload(filepath)
|
| 141 |
-
except Exception as e:
|
| 142 |
-
raise HTTPException(status_code=500, detail=f"Image upload failed: {str(e)}")
|
| 143 |
-
|
| 144 |
APP_DOMAIN = os.getenv("APP_DOMAIN")
|
| 145 |
image_local_url = f"{APP_DOMAIN}uploads/{saved_filename}"
|
| 146 |
|
|
@@ -154,13 +171,12 @@ async def upload_photo(
|
|
| 154 |
session.commit()
|
| 155 |
session.refresh(photo)
|
| 156 |
|
| 157 |
-
# --- Schedule background task ---
|
| 158 |
if background_tasks:
|
| 159 |
background_tasks.add_task(
|
| 160 |
process_image_in_background,
|
| 161 |
photo_id=photo.id,
|
| 162 |
-
filepath=filepath
|
| 163 |
-
image_url=image_url
|
| 164 |
)
|
| 165 |
|
| 166 |
return UploadResponse(
|
|
|
|
| 12 |
from cloudzy.search_engine import SearchEngine
|
| 13 |
|
| 14 |
from cloudzy.agents.image_analyzer import ImageDescriber
|
| 15 |
+
from cloudzy.agents.image_analyzer_2 import ImageAnalyzerAgent
|
| 16 |
from cloudzy.utils.file_upload_service import ImgBBUploader
|
| 17 |
|
| 18 |
|
|
|
|
| 63 |
"""Check if file has valid image extension"""
|
| 64 |
return Path(filename).suffix.lower() in ALLOWED_EXTENSIONS
|
| 65 |
|
| 66 |
+
def process_image_in_background(photo_id: int, filepath: str):
|
| 67 |
"""
|
| 68 |
Background task to:
|
| 69 |
+
- Analyze image metadata (primary method using local file)
|
| 70 |
+
- Fallback to ImgBB upload + ImageDescriber if metadata analysis fails
|
| 71 |
- Generate embedding
|
| 72 |
- Update database record
|
| 73 |
- Index embedding in FAISS
|
|
|
|
| 76 |
from sqlmodel import select
|
| 77 |
|
| 78 |
try:
|
| 79 |
+
result = None
|
| 80 |
+
|
| 81 |
+
# --- Primary method: Analyze metadata from local filepath ---
|
| 82 |
+
try:
|
| 83 |
+
print(f"[Background] Analyzing image metadata locally for photo {photo_id}...")
|
| 84 |
+
analyzer = ImageAnalyzerAgent()
|
| 85 |
+
result = analyzer.analyze_image_metadata(filepath)
|
| 86 |
+
print(f"[Background] Successfully extracted metadata for photo {photo_id}")
|
| 87 |
+
except Exception as metadata_error:
|
| 88 |
+
print(f"[Background] Metadata analysis failed for photo {photo_id}: {metadata_error}")
|
| 89 |
+
print(f"[Background] Falling back to ImgBB upload + ImageDescriber...")
|
| 90 |
+
|
| 91 |
+
# --- Fallback method: Upload to ImgBB and use ImageDescriber ---
|
| 92 |
+
try:
|
| 93 |
+
uploader = ImgBBUploader(expiration=600)
|
| 94 |
+
image_url = uploader.upload(filepath)
|
| 95 |
+
print(f"[Background] Image {photo_id} uploaded to ImgBB: {image_url}")
|
| 96 |
+
|
| 97 |
+
describer = ImageDescriber()
|
| 98 |
+
print(f"[Background] Processing image {photo_id} with ImageDescriber...")
|
| 99 |
+
result = describer.describe_image(image_url)
|
| 100 |
+
print(f"[Background] Successfully described image using ImageDescriber")
|
| 101 |
+
except Exception as fallback_error:
|
| 102 |
+
raise Exception(f"Both metadata analysis and ImageDescriber failed - Primary: {str(metadata_error)}, Fallback: {str(fallback_error)}")
|
| 103 |
|
| 104 |
tags = result.get("tags", [])
|
| 105 |
caption = result.get("caption", "")
|
|
|
|
| 158 |
saved_filename = save_uploaded_file(content, file.filename)
|
| 159 |
filepath = f"uploads/{saved_filename}"
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
APP_DOMAIN = os.getenv("APP_DOMAIN")
|
| 162 |
image_local_url = f"{APP_DOMAIN}uploads/{saved_filename}"
|
| 163 |
|
|
|
|
| 171 |
session.commit()
|
| 172 |
session.refresh(photo)
|
| 173 |
|
| 174 |
+
# --- Schedule background task (includes ImgBB upload) ---
|
| 175 |
if background_tasks:
|
| 176 |
background_tasks.add_task(
|
| 177 |
process_image_in_background,
|
| 178 |
photo_id=photo.id,
|
| 179 |
+
filepath=filepath
|
|
|
|
| 180 |
)
|
| 181 |
|
| 182 |
return UploadResponse(
|
cloudzy/schemas.py
CHANGED
|
@@ -65,4 +65,11 @@ class AlbumItem(BaseModel):
|
|
| 65 |
album_summary: str
|
| 66 |
album: List[PhotoItem]
|
| 67 |
|
| 68 |
-
AlbumsResponse = List[AlbumItem]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
album_summary: str
|
| 66 |
album: List[PhotoItem]
|
| 67 |
|
| 68 |
+
AlbumsResponse = List[AlbumItem]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class GenerateImageResponse(BaseModel):
|
| 72 |
+
"""Response for generating a similar image"""
|
| 73 |
+
description: str
|
| 74 |
+
generated_image_url: str
|
| 75 |
+
message: str
|
cloudzy/search_engine.py
CHANGED
|
@@ -3,6 +3,7 @@ import faiss
|
|
| 3 |
import numpy as np
|
| 4 |
from typing import List, Tuple
|
| 5 |
import os
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class SearchEngine:
|
|
@@ -19,20 +20,21 @@ class SearchEngine:
|
|
| 19 |
base_index = faiss.IndexFlatL2(dim)
|
| 20 |
self.index = faiss.IndexIDMap(base_index)
|
| 21 |
|
| 22 |
-
def create_albums(self, top_k: int = 5, distance_threshold: float = 0.3) -> List[List[int]]:
|
| 23 |
"""
|
| 24 |
Group similar images into albums (clusters).
|
| 25 |
|
| 26 |
-
|
| 27 |
Photos are marked as visited to avoid duplicate albums.
|
| 28 |
Only includes photos within the distance threshold.
|
| 29 |
|
| 30 |
Args:
|
| 31 |
-
top_k: Number of
|
| 32 |
-
distance_threshold: Maximum distance to consider photos as similar (default 0.
|
|
|
|
| 33 |
|
| 34 |
Returns:
|
| 35 |
-
List of albums, each album is a list of photo_ids
|
| 36 |
"""
|
| 37 |
from cloudzy.database import SessionLocal
|
| 38 |
from cloudzy.models import Photo
|
|
@@ -45,11 +47,18 @@ class SearchEngine:
|
|
| 45 |
# Get all photo IDs from FAISS index
|
| 46 |
id_map = self.index.id_map
|
| 47 |
all_ids = [id_map.at(i) for i in range(id_map.size())]
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
visited = set()
|
| 50 |
albums = []
|
| 51 |
|
| 52 |
for photo_id in all_ids:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
# Skip if already in an album
|
| 54 |
if photo_id in visited:
|
| 55 |
continue
|
|
@@ -67,7 +76,7 @@ class SearchEngine:
|
|
| 67 |
|
| 68 |
# Search for similar images
|
| 69 |
query_embedding = np.array(embedding).reshape(1, -1).astype(np.float32)
|
| 70 |
-
distances, ids = self.index.search(query_embedding,
|
| 71 |
|
| 72 |
# Build album: collect similar photos that haven't been visited and are within threshold
|
| 73 |
album = []
|
|
@@ -153,3 +162,42 @@ class SearchEngine:
|
|
| 153 |
"dimension": self.dim,
|
| 154 |
"index_type": type(self.index).__name__,
|
| 155 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
from typing import List, Tuple
|
| 5 |
import os
|
| 6 |
+
import random
|
| 7 |
|
| 8 |
|
| 9 |
class SearchEngine:
|
|
|
|
| 20 |
base_index = faiss.IndexFlatL2(dim)
|
| 21 |
self.index = faiss.IndexIDMap(base_index)
|
| 22 |
|
| 23 |
+
def create_albums(self, top_k: int = 5, distance_threshold: float = 0.3, album_size: int = 5) -> List[List[int]]:
|
| 24 |
"""
|
| 25 |
Group similar images into albums (clusters).
|
| 26 |
|
| 27 |
+
Returns exactly top_k albums, each containing up to album_size similar photos.
|
| 28 |
Photos are marked as visited to avoid duplicate albums.
|
| 29 |
Only includes photos within the distance threshold.
|
| 30 |
|
| 31 |
Args:
|
| 32 |
+
top_k: Number of albums to return
|
| 33 |
+
distance_threshold: Maximum distance to consider photos as similar (default 0.3)
|
| 34 |
+
album_size: How many similar photos to search for per album (default 5)
|
| 35 |
|
| 36 |
Returns:
|
| 37 |
+
List of top_k albums, each album is a list of photo_ids (randomized order each call)
|
| 38 |
"""
|
| 39 |
from cloudzy.database import SessionLocal
|
| 40 |
from cloudzy.models import Photo
|
|
|
|
| 47 |
# Get all photo IDs from FAISS index
|
| 48 |
id_map = self.index.id_map
|
| 49 |
all_ids = [id_map.at(i) for i in range(id_map.size())]
|
| 50 |
+
|
| 51 |
+
# Shuffle for randomization - different albums each call
|
| 52 |
+
random.shuffle(all_ids)
|
| 53 |
|
| 54 |
visited = set()
|
| 55 |
albums = []
|
| 56 |
|
| 57 |
for photo_id in all_ids:
|
| 58 |
+
# Stop if we have enough albums
|
| 59 |
+
if len(albums) >= top_k:
|
| 60 |
+
break
|
| 61 |
+
|
| 62 |
# Skip if already in an album
|
| 63 |
if photo_id in visited:
|
| 64 |
continue
|
|
|
|
| 76 |
|
| 77 |
# Search for similar images
|
| 78 |
query_embedding = np.array(embedding).reshape(1, -1).astype(np.float32)
|
| 79 |
+
distances, ids = self.index.search(query_embedding, album_size)
|
| 80 |
|
| 81 |
# Build album: collect similar photos that haven't been visited and are within threshold
|
| 82 |
album = []
|
|
|
|
| 162 |
"dimension": self.dim,
|
| 163 |
"index_type": type(self.index).__name__,
|
| 164 |
}
|
| 165 |
+
|
| 166 |
+
def debug_distances(self, sample_size: int = 3) -> dict:
|
| 167 |
+
"""Debug distances between photos to understand why albums aren't grouping"""
|
| 168 |
+
from cloudzy.database import SessionLocal
|
| 169 |
+
from cloudzy.models import Photo
|
| 170 |
+
from sqlmodel import select
|
| 171 |
+
|
| 172 |
+
self.load()
|
| 173 |
+
if self.index.ntotal == 0:
|
| 174 |
+
return {"error": "No embeddings in index"}
|
| 175 |
+
|
| 176 |
+
id_map = self.index.id_map
|
| 177 |
+
all_ids = [id_map.at(i) for i in range(min(id_map.size(), sample_size))]
|
| 178 |
+
|
| 179 |
+
debug_info = {}
|
| 180 |
+
session = SessionLocal()
|
| 181 |
+
try:
|
| 182 |
+
for photo_id in all_ids:
|
| 183 |
+
photo = session.exec(select(Photo).where(Photo.id == photo_id)).first()
|
| 184 |
+
if not photo:
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
embedding = photo.get_embedding()
|
| 188 |
+
if not embedding:
|
| 189 |
+
continue
|
| 190 |
+
|
| 191 |
+
query_embedding = np.array(embedding).reshape(1, -1).astype(np.float32)
|
| 192 |
+
distances, ids = self.index.search(query_embedding, 5)
|
| 193 |
+
|
| 194 |
+
debug_info[photo_id] = {
|
| 195 |
+
"top_5_results": [
|
| 196 |
+
{"id": int(pid), "distance": float(d)}
|
| 197 |
+
for pid, d in zip(ids[0], distances[0]) if pid != -1
|
| 198 |
+
]
|
| 199 |
+
}
|
| 200 |
+
finally:
|
| 201 |
+
session.close()
|
| 202 |
+
|
| 203 |
+
return debug_info
|