matinsn2000 commited on
Commit
9945f18
·
1 Parent(s): 4aacf70

Removed torch code

Browse files
cloudzy/embedding/image_embedding.py DELETED
@@ -1,53 +0,0 @@
1
- from transformers import AutoModel, AutoProcessor
2
- from PIL import Image
3
- import requests
4
- import numpy as np
5
- import torch
6
- from io import BytesIO
7
-
8
- # Load model and processor directly
9
- model = AutoModel.from_pretrained("jinaai/jina-clip-v2", trust_remote_code=True)
10
- processor = AutoProcessor.from_pretrained("jinaai/jina-clip-v2", trust_remote_code=True)
11
-
12
- texts = ["Woman taking pictures on a road trip.", "delicious fruits glowing under sunlight"]
13
- # Process and encode text
14
- text_inputs = processor(text=texts, return_tensors="pt", padding=True)
15
- with torch.no_grad():
16
- text_embeddings = model.get_text_features(**text_inputs)
17
- text_embeddings = text_embeddings.cpu().numpy()
18
- print("Text embeddings shape:", text_embeddings.shape)
19
-
20
- image_paths = [
21
- "/Users/komeilfathi/Documents/hf_deploy_test/cloudzy_ai_challenge/uploads/img_1_20251026_014959_886.jpg",
22
- "/Users/komeilfathi/Documents/hf_deploy_test/cloudzy_ai_challenge/uploads/img_9_20251024_185602_319.webp"
23
- ]
24
- images = []
25
- for path in image_paths:
26
- try:
27
- img = Image.open(path).convert("RGB")
28
- images.append(img)
29
- print(f"✓ Loaded image from {path}")
30
- except Exception as e:
31
- print(f"✗ Failed to load image from {path}: {e}")
32
-
33
- # Process and encode images
34
- if images:
35
- image_inputs = processor(images=images, return_tensors="pt")
36
- with torch.no_grad():
37
- image_embeddings = model.get_image_features(**image_inputs)
38
- image_embeddings = image_embeddings.cpu().numpy()
39
- print("Image embeddings shape:", image_embeddings.shape)
40
- else:
41
- print("⚠ No images loaded successfully")
42
- image_embeddings = np.array([])
43
-
44
- def cosine_similarity(a, b):
45
- return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
46
-
47
- if len(image_embeddings) > 0:
48
- for i, t_emb in enumerate(text_embeddings):
49
- for j, i_emb in enumerate(image_embeddings):
50
- sim = cosine_similarity(t_emb, i_emb)
51
- print(f"Similarity between text {i} and image {j}: {sim:.4f}")
52
- else:
53
- print("No images to compare similarity with")