"""FAISS-based semantic search engine""" import faiss import numpy as np from typing import List, Tuple, Optional import os class SearchEngine: """FAISS-based search engine for image embeddings""" def __init__(self, dim: int = 512, index_path: str = "faiss_index.bin"): self.dim = dim self.index_path = index_path self.id_map: List[int] = [] # Map FAISS indices to photo IDs # Load existing index or create new one if os.path.exists(index_path): self.index = faiss.read_index(index_path) else: self.index = faiss.IndexFlatL2(dim) def add_embedding(self, photo_id: int, embedding: np.ndarray) -> None: """ Add an embedding to the index. Args: photo_id: Unique photo identifier embedding: 1D numpy array of shape (dim,) """ # Ensure embedding is float32 and correct shape embedding = embedding.astype(np.float32).reshape(1, -1) # Add to FAISS index self.index.add(embedding) # Track photo ID self.id_map.append(photo_id) # Save index to disk self.save() def search(self, query_embedding: np.ndarray, top_k: int = 5) -> List[Tuple[int, float]]: """ Search for similar embeddings. Args: query_embedding: 1D numpy array of shape (dim,) top_k: Number of results to return Returns: List of (photo_id, distance) tuples """ if self.index.ntotal == 0: return [] # Ensure query is float32 and correct shape query_embedding = query_embedding.astype(np.float32).reshape(1, -1) # Search in FAISS index distances, indices = self.index.search(query_embedding, min(top_k, self.index.ntotal)) # Map back to photo IDs results = [ (self.id_map[int(idx)], float(distance)) for distance, idx in zip(distances[0], indices[0]) ] return results def save(self) -> None: """Save index to disk""" faiss.write_index(self.index, self.index_path) def load(self) -> None: """Load index from disk""" if os.path.exists(self.index_path): self.index = faiss.read_index(self.index_path) def get_stats(self) -> dict: """Get index statistics""" return { "total_embeddings": self.index.ntotal, "dimension": self.dim, "id_map_size": len(self.id_map) }