ai_ocr / app.py
utarn's picture
Fix launch
f3fa6c4
raw
history blame
15.5 kB
import gradio as gr
import requests
import json
import base64
import os
from typing import List, Optional, Tuple, Any
import mimetypes
class OmniAPIClient:
"""Client for interacting with the Omni API"""
def __init__(self, base_url: str = "https://api.modelharbor.com"):
self.base_url = base_url.rstrip('/')
self.chat_endpoint = f"{self.base_url}/v1/chat/completions"
self.models_endpoint = f"{self.base_url}/v1/models"
def encode_file_to_base64(self, file_path: str) -> str:
"""Encode file to base64 string"""
with open(file_path, "rb") as file:
return base64.b64encode(file.read()).decode('utf-8')
def get_mime_type(self, file_path: str) -> str:
"""Get MIME type of file"""
mime_type, _ = mimetypes.guess_type(file_path)
return mime_type or "application/octet-stream"
def create_file_content(self, file_path: str, file_type: str) -> dict:
"""Create file content object based on API format"""
file_name = os.path.basename(file_path)
mime_type = self.get_mime_type(file_path)
# Check if the file is an image
if mime_type and mime_type.startswith('image/'):
# Handle images with the new format
file_data_b64 = self.encode_file_to_base64(file_path)
return {
"type": "image_url",
"image_url": {
"url": f"data:{mime_type};base64,{file_data_b64}"
}
}
else:
# Handle other files with existing logic
file_data_b64 = self.encode_file_to_base64(file_path)
return {
"type": "file",
"file": {
"filename": file_name,
"file_data": f"data:{mime_type};base64,{file_data_b64}"
}
}
def build_message_content(self, text: str, files: List[str]) -> List[dict]:
"""Build message content with text and files"""
content_parts = []
# Add text content first
if text.strip():
content_parts.append({
"type": "text",
"text": text
})
# Add files in order
for file_path in files:
if file_path and os.path.exists(file_path):
file_content = self.create_file_content(file_path, "file")
content_parts.append(file_content)
return content_parts
def get_available_models(self, api_key: str = "") -> Tuple[bool, List[str]]:
"""Return fixed set of available models"""
# Fixed set of models as requested
fixed_models = [
"typhoon-ocr-preview",
"openai/gpt-5",
"meta-llama/llama-4-maverick",
"qwen/qwen3-235b-a22b-instruct-2507",
"gemini/gemini-2.5-pro",
"gemini/gemini-2.5-flash"
]
return True, fixed_models
def send_chat_completion(self, text: str, files: List[str], api_key: str = "", model: str = "qwen/qwen3-235b-a22b-instruct-2507", max_tokens: int = 16384, stream: bool = False) -> Tuple[bool, Any]:
"""Send chat completion request to the API"""
try:
# Build message content
content_parts = self.build_message_content(text, files)
# If no content parts, return error
if not content_parts:
return False, {"error": "No text or valid files provided"}
# Build request payload
payload = {
"model": model,
"messages": [
{
"role": "user",
"content": content_parts
}
],
"max_tokens": max_tokens,
"stream": stream
}
# Build headers
headers = {
"Content-Type": "application/json"
}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
# Send request
response = requests.post(
self.chat_endpoint,
json=payload,
headers=headers,
timeout=60
)
# Check response
if response.status_code == 200:
try:
response_data = response.json()
return True, response_data
except json.JSONDecodeError:
return False, {"error": "Invalid JSON response", "raw_response": response.text}
else:
try:
error_data = response.json()
return False, {"error": f"API Error ({response.status_code})", "details": error_data}
except json.JSONDecodeError:
return False, {"error": f"HTTP {response.status_code}", "raw_response": response.text}
except requests.exceptions.Timeout:
return False, {"error": "Request timeout"}
except requests.exceptions.ConnectionError:
return False, {"error": "Connection error"}
except Exception as e:
return False, {"error": f"Unexpected error: {str(e)}"}
def create_ui():
"""Create the Gradio UI"""
def fetch_models(base_url, api_key):
"""Return fixed set of available models"""
# Fixed set of models as requested
fixed_models = [
"typhoon-ocr-preview",
"openai/gpt-5",
"meta-llama/llama-4-maverick",
"qwen/qwen3-235b-a22b-instruct-2507",
"gemini/gemini-2.5-pro",
"gemini/gemini-2.5-flash"
]
return gr.Dropdown(choices=fixed_models, value="qwen/qwen3-235b-a22b-instruct-2507")
def send_request(base_url, api_key, model, max_tokens, text, files):
"""Handle request submission"""
try:
# Validate inputs
if not base_url:
return "❌ Base URL is required", ""
if not text.strip() and not files:
return "❌ Please provide either text or upload files", ""
# Create client
client = OmniAPIClient(base_url)
# Filter out None/empty files - handle various file input states
valid_files = []
if files is not None:
# Handle single file or list of files
if isinstance(files, list):
valid_files = [f.name for f in files if f is not None and hasattr(f, 'name')]
elif hasattr(files, 'name'):
# Single file object
valid_files = [files.name]
# Send request
success, response = client.send_chat_completion(
text=text,
files=valid_files,
api_key=api_key,
model=model,
max_tokens=max_tokens
)
if success:
# Format successful response
formatted_response = json.dumps(response, indent=2)
# Extract the assistant's reply if available
if "choices" in response and len(response["choices"]) > 0:
choice = response["choices"][0]
if "message" in choice and "content" in choice["message"]:
# Check if model contains 'typhoon'
if "typhoon" in model.lower():
try:
# If the text is { "natural_text": "..." }, extract the natural_text as json object
json_content = json.loads(choice["message"]["content"])
if "natural_text" in json_content:
assistant_reply = json_content["natural_text"]
else:
assistant_reply = choice["message"]["content"]
except (KeyError, TypeError):
# Fallback to content if natural_text is not available
assistant_reply = choice["message"]["content"]
else:
assistant_reply = choice["message"]["content"]
status = f"βœ… Request successful\n\n**Assistant Reply:**\n{assistant_reply}"
else:
status = "βœ… Request successful"
else:
status = "βœ… Request successful"
return status, formatted_response
else:
# Format error response
error_response = json.dumps(response, indent=2)
return f"❌ Request failed", error_response
except Exception as e:
return f"❌ Error: {str(e)}", ""
def clear_form():
"""Clear all form inputs"""
return "", "", "", None
# Custom CSS for better layout
css = """
.gradio-container {
max-width: 1200px;
}
.config-panel {
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
margin-bottom: 20px;
}
.input-panel {
border-right: 1px solid #e0e0e0;
padding-right: 20px;
}
.output-panel {
padding-left: 20px;
}
"""
with gr.Blocks(css=css, title="Omni API Chat Interface") as interface:
gr.Markdown("# πŸ€– Omni API Chat Interface")
gr.Markdown("Interact with the Omni API using text, PDFs, images, and audio files")
# Configuration section
with gr.Group(elem_classes=["config-panel"]):
gr.Markdown("## βš™οΈ Configuration")
with gr.Row():
base_url = gr.Textbox(
label="API Base URL",
value="https://api.modelharbor.com",
placeholder="https://api.modelharbor.com"
)
api_key = gr.Textbox(
label="API Key (Optional)",
type="password",
placeholder="Enter your API key if required"
)
with gr.Row():
with gr.Column(scale=3):
model = gr.Dropdown(
label="Model",
choices=[
"typhoon-ocr-preview",
"openai/gpt-5",
"meta-llama/llama-4-maverick",
"qwen/qwen3-235b-a22b-instruct-2507",
"gemini/gemini-2.5-pro",
"gemini/gemini-2.5-flash"
],
value="qwen/qwen3-235b-a22b-instruct-2507",
interactive=True
)
with gr.Column(scale=2):
max_tokens = gr.Number(
label="Max Tokens",
value=16384,
minimum=1,
maximum=32000
)
# Main interface
with gr.Row():
# Input panel (left side)
with gr.Column(scale=1, elem_classes=["input-panel"]):
gr.Markdown("## πŸ“ Input")
text_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=5
)
file_upload = gr.File(
label="Upload Files",
file_count="multiple",
file_types=[
".pdf", ".jpg", ".jpeg", ".png", ".gif", ".bmp", ".webp",
".mp3", ".wav", ".m4a", ".flac", ".ogg"
]
)
with gr.Row():
send_btn = gr.Button("πŸš€ Send Request", variant="primary", size="lg")
clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary")
# Output panel (right side)
with gr.Column(scale=1, elem_classes=["output-panel"]):
gr.Markdown("## πŸ“€ Response")
status_output = gr.Textbox(
label="Status",
placeholder="Response status will appear here...",
lines=8,
max_lines=15,
interactive=False
)
response_output = gr.Code(
label="Raw Response",
language="json",
interactive=False
)
# Example section
with gr.Accordion("πŸ“š Usage Examples", open=False):
gr.Markdown("""
### Example Requests:
**Text Only:**
- Message: "Hello, how are you?"
- Files: None
**PDF Analysis:**
- Message: "Please summarize this document"
- Files: document.pdf
**Image OCR:**
- Message: "Extract text from this image"
- Files: receipt.jpg
**Audio Transcription:**
- Message: "Transcribe this audio file"
- Files: meeting.mp3
**Multi-modal:**
- Message: "Analyze these files and provide insights"
- Files: report.pdf, chart.png, recording.wav
### Supported File Types:
- **PDFs**: .pdf
- **Images**: .jpg, .jpeg, .png, .gif, .bmp, .webp
- **Audio**: .mp3, .wav, .m4a, .flac, .ogg
""")
# Event handlers
send_btn.click(
fn=send_request,
inputs=[base_url, api_key, model, max_tokens, text_input, file_upload],
outputs=[status_output, response_output]
)
clear_btn.click(
fn=clear_form,
outputs=[text_input, status_output, response_output, file_upload]
)
# Allow Enter key to submit (when text input is focused)
text_input.submit(
fn=send_request,
inputs=[base_url, api_key, model, max_tokens, text_input, file_upload],
outputs=[status_output, response_output]
)
# Preload models when interface loads
interface.load(
fn=fetch_models,
inputs=[base_url, api_key],
outputs=[model]
)
return interface
if __name__ == "__main__":
# Create and launch the interface
demo = create_ui()
# Launch with custom settings
demo.launch(
# server_name="127.0.0.1", # Use localhost instead of 0.0.0.0
# server_port=7892, # Use different port to avoid conflicts
# share=False, # Set to True to create public link
# debug=True, # Disable debug mode to reduce console errors
# show_error=True, # Show detailed error messages
# inbrowser=False, # Auto-open in browser
# prevent_thread_lock=False # Ensure proper threading
)