Spaces:
Sleeping
Sleeping
updated
Browse files- Dockerfile +4 -1
- agent.py +27 -19
- requirements.txt +3 -3
- st_app.py +1 -1
Dockerfile
CHANGED
|
@@ -7,12 +7,15 @@ COPY ./requirements.txt /app/requirements.txt
|
|
| 7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
| 8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
| 9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
| 10 |
-
|
| 11 |
# User
|
| 12 |
RUN useradd -m -u 1000 user
|
| 13 |
USER user
|
| 14 |
ENV HOME /home/user
|
| 15 |
ENV PATH $HOME/.local/bin:$PATH
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
WORKDIR $HOME
|
| 18 |
RUN mkdir app
|
|
|
|
| 7 |
RUN pip3 install --no-cache-dir --upgrade pip
|
| 8 |
RUN pip3 install --no-cache-dir wheel setuptools build
|
| 9 |
RUN pip3 install --no-cache-dir --use-pep517 -r /app/requirements.txt
|
| 10 |
+
|
| 11 |
# User
|
| 12 |
RUN useradd -m -u 1000 user
|
| 13 |
USER user
|
| 14 |
ENV HOME /home/user
|
| 15 |
ENV PATH $HOME/.local/bin:$PATH
|
| 16 |
+
ENV TIKTOKEN_CACHE_DIR $HOME/.cache/tiktoken
|
| 17 |
+
|
| 18 |
+
RUN mkdir -p $HOME/.cache/tiktoken
|
| 19 |
|
| 20 |
WORKDIR $HOME
|
| 21 |
RUN mkdir app
|
agent.py
CHANGED
|
@@ -1,39 +1,47 @@
|
|
| 1 |
import os
|
| 2 |
from omegaconf import OmegaConf
|
| 3 |
from vectara_agentic.agent import Agent
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from dotenv import load_dotenv
|
| 6 |
load_dotenv(override=True)
|
| 7 |
|
| 8 |
initial_prompt = "How can I help you today?"
|
| 9 |
|
| 10 |
-
|
| 11 |
def initialize_agent(_cfg, agent_progress_callback=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
agent = Agent.from_corpus(
|
| 13 |
vectara_corpus_key=_cfg.corpus_key,
|
| 14 |
vectara_api_key=_cfg.api_key,
|
| 15 |
tool_name="ask_ucsf_ortho",
|
| 16 |
data_description="UCSF Orthopedic Website",
|
| 17 |
-
assistant_specialty="UCSF Orthopedic department",
|
| 18 |
-
|
| 19 |
-
# vectara_reranker = "chain", vectara_rerank_k = 100,
|
| 20 |
-
# vectara_rerank_chain = [
|
| 21 |
-
# {
|
| 22 |
-
# "type": "multilingual_reranker_v1",
|
| 23 |
-
# "cutoff": 0.5,
|
| 24 |
-
# "limit": 100
|
| 25 |
-
# },
|
| 26 |
-
# {
|
| 27 |
-
# "type": "mmr",
|
| 28 |
-
# "diversity_bias": 0.1
|
| 29 |
-
# }
|
| 30 |
-
# ],
|
| 31 |
-
vectara_reranker="multilingual_reranker_v1",
|
| 32 |
-
vectara_rerank_k=100,
|
| 33 |
vectara_lambda_val=0.005,
|
| 34 |
-
|
| 35 |
-
|
|
|
|
| 36 |
agent_progress_callback=agent_progress_callback,
|
|
|
|
|
|
|
| 37 |
)
|
| 38 |
agent.report()
|
| 39 |
return agent
|
|
|
|
| 1 |
import os
|
| 2 |
from omegaconf import OmegaConf
|
| 3 |
from vectara_agentic.agent import Agent
|
| 4 |
+
from vectara_agentic.agent_config import AgentConfig
|
| 5 |
+
from vectara_agentic.types import ModelProvider, AgentType
|
| 6 |
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
load_dotenv(override=True)
|
| 9 |
|
| 10 |
initial_prompt = "How can I help you today?"
|
| 11 |
|
|
|
|
| 12 |
def initialize_agent(_cfg, agent_progress_callback=None):
|
| 13 |
+
|
| 14 |
+
agent_config = AgentConfig(
|
| 15 |
+
agent_type = os.getenv("VECTARA_AGENTIC_AGENT_TYPE", AgentType.OPENAI.value),
|
| 16 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
| 17 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_MAIN_MODEL_NAME", ""),
|
| 18 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
| 19 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_TOOL_MODEL_NAME", ""),
|
| 20 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
| 21 |
+
)
|
| 22 |
+
fallback_agent_config = AgentConfig(
|
| 23 |
+
agent_type = os.getenv("VECTARA_AGENTIC_FALLBACK_AGENT_TYPE", AgentType.OPENAI.value),
|
| 24 |
+
main_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
| 25 |
+
main_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_MAIN_MODEL_NAME", ""),
|
| 26 |
+
tool_llm_provider = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_LLM_PROVIDER", ModelProvider.OPENAI.value),
|
| 27 |
+
tool_llm_model_name = os.getenv("VECTARA_AGENTIC_FALLBACK_TOOL_MODEL_NAME", ""),
|
| 28 |
+
observer = os.getenv("VECTARA_AGENTIC_OBSERVER_TYPE", "NO_OBSERVER")
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
agent = Agent.from_corpus(
|
| 32 |
vectara_corpus_key=_cfg.corpus_key,
|
| 33 |
vectara_api_key=_cfg.api_key,
|
| 34 |
tool_name="ask_ucsf_ortho",
|
| 35 |
data_description="UCSF Orthopedic Website",
|
| 36 |
+
assistant_specialty="UCSF Orthopedic department, helping users with questions about the department.",
|
| 37 |
+
vectara_reranker="multilingual_reranker_v1", vectara_rerank_k=100,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
vectara_lambda_val=0.005,
|
| 39 |
+
vectara_summarizer="vectara-summary-table-md-query-ext-jan-2025-gpt-4o",
|
| 40 |
+
vectara_summary_num_results=20,
|
| 41 |
+
verbose=True,
|
| 42 |
agent_progress_callback=agent_progress_callback,
|
| 43 |
+
agent_config=agent_config,
|
| 44 |
+
fallback_agent_config=fallback_agent_config,
|
| 45 |
)
|
| 46 |
agent.report()
|
| 47 |
return agent
|
requirements.txt
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
omegaconf==2.3.0
|
| 2 |
python-dotenv==1.0.1
|
| 3 |
-
streamlit==1.
|
| 4 |
streamlit_feedback==0.1.3
|
| 5 |
uuid==1.30
|
| 6 |
langdetect==1.0.9
|
| 7 |
langcodes==3.4.0
|
| 8 |
-
vectara-agentic==0.2.
|
| 9 |
-
torch==2.6.0
|
|
|
|
| 1 |
omegaconf==2.3.0
|
| 2 |
python-dotenv==1.0.1
|
| 3 |
+
streamlit==1.45.0
|
| 4 |
streamlit_feedback==0.1.3
|
| 5 |
uuid==1.30
|
| 6 |
langdetect==1.0.9
|
| 7 |
langcodes==3.4.0
|
| 8 |
+
vectara-agentic==0.2.15
|
| 9 |
+
torch==2.6.0
|
st_app.py
CHANGED
|
@@ -131,7 +131,7 @@ async def launch_bot():
|
|
| 131 |
if st.session_state.prompt:
|
| 132 |
with st.chat_message("assistant", avatar='🤖'):
|
| 133 |
st.session_state.status = st.status('Processing...', expanded=False)
|
| 134 |
-
response = st.session_state.agent.
|
| 135 |
res = escape_dollars_outside_latex(response.response)
|
| 136 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
| 137 |
st.session_state.messages.append(message)
|
|
|
|
| 131 |
if st.session_state.prompt:
|
| 132 |
with st.chat_message("assistant", avatar='🤖'):
|
| 133 |
st.session_state.status = st.status('Processing...', expanded=False)
|
| 134 |
+
response = await st.session_state.agent.achat(st.session_state.prompt)
|
| 135 |
res = escape_dollars_outside_latex(response.response)
|
| 136 |
message = {"role": "assistant", "content": res, "avatar": '🤖'}
|
| 137 |
st.session_state.messages.append(message)
|