File size: 8,826 Bytes
0a5c991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Medical Chatbot using Gemini 1.5 Flash with citation and confidence scoring
"""
import google.generativeai as genai
from google.generativeai import types
from typing import List, Dict, Any
from config import GOOGLE_API_KEY, LLM_MODEL, TOP_K, SIMILARITY_THRESHOLD
from embedding_service import EmbeddingService

class MedicalChatbot:
    def __init__(self, embedding_service: EmbeddingService):
        """Initialize the medical chatbot"""
        self.embedding_service = embedding_service
        
        # Configure Gemini
        genai.configure(api_key=GOOGLE_API_KEY)
        
        # Try available model names
        model_attempts = [
            "models/gemini-2.5-flash",  # Fast and efficient
            "models/gemini-2.0-flash",  # Alternative fast model
            "models/gemini-2.5-pro",  # More capable
            "models/gemini-flash-latest",
            "models/gemini-pro-latest",
        ]
        
        self.model = None
        for model_name in model_attempts:
            try:
                self.model = genai.GenerativeModel(model_name)
                # Test if it actually works
                test_response = self.model.generate_content("test")
                print(f"✓ Successfully initialized model: {model_name}")
                break
            except Exception as e:
                print(f"✗ Failed to initialize {model_name}: {str(e)[:80]}")
                continue
        
        if self.model is None:
            raise Exception("Could not initialize any Gemini model. Please check your API key and model availability.")
        
        # System prompt for medical chatbot
        self.system_prompt = """You are a medical information assistant. Based ONLY on the provided medical context, answer the user's question accurately and concisely.

IMPORTANT RULES:
1. Answer ONLY using information from the provided context below
2. DO NOT make up or guess information
3. If the context doesn't contain enough information, say "Based on the available information..."
4. Be accurate and factual
5. Keep answers concise and clear
6. At the end, add a disclaimer: "⚠️ This is not medical advice. Consult healthcare professionals."
"""
    
    def calculate_confidence_score(self, similarity_scores: List[float]) -> tuple:
        """Calculate confidence score based on similarity scores"""
        if not similarity_scores:
            return "Low", 0.0
        
        avg_score = sum(similarity_scores) / len(similarity_scores)
        max_score = max(similarity_scores)
        
        # Confidence based on best match
        if max_score >= 0.85:
            return "High", max_score
        elif max_score >= 0.65:
            return "Medium", max_score
        else:
            return "Low", max_score
    
    def format_context_with_citations(self, results: List[Dict[str, Any]]) -> str:
        """Format retrieved context with citations"""
        context_parts = []
        citation_map = {}
        
        for idx, result in enumerate(results):
            metadata = result.metadata
            score = result.score
            text = metadata.get('text', '')
            
            citation_id = f"[Source {idx + 1}]"
            citation_map[f"Source_{idx + 1}"] = {
                'id': citation_id,
                'text': text[:300] + "..." if len(text) > 300 else text,
                'source': metadata.get('source', 'unknown'),
                'similarity_score': round(score, 3),
                'metadata': metadata
            }
            
            # Format the context more clearly
            context_parts.append(f"{citation_id}\n{text}\n")
        
        return "".join(context_parts), citation_map
    
    def generate_response(self, user_query: str) -> Dict[str, Any]:
        """Generate response to user query with citations and confidence"""
        # Check if query is medical-related
        is_medical_query = self.is_medical_related(user_query)
        
        if not is_medical_query:
            return {
                'response': "I'm a medical assistant. Please ask me medical or health-related questions only.",
                'confidence': "N/A",
                'confidence_score': 0.0,
                'sources': [],
                'citations': {}
            }
        
        # Search for relevant documents
        results = self.embedding_service.search(user_query, top_k=TOP_K)
        
        if not results.matches:
            return {
                'response': "I couldn't find relevant medical information for your query. Please consult with a healthcare professional for accurate medical advice.",
                'confidence': "Low",
                'confidence_score': 0.0,
                'sources': [],
                'citations': {}
            }
        
        # Filter results by similarity threshold
        filtered_results = [
            r for r in results.matches 
            if r.score >= SIMILARITY_THRESHOLD
        ]
        
        if not filtered_results:
            return {
                'response': "I couldn't find enough reliable information for your query. Please consult with a healthcare professional.",
                'confidence': "Low",
                'confidence_score': 0.0,
                'sources': [],
                'citations': {}
            }
        
        # Format context with citations
        context, citation_map = self.format_context_with_citations(filtered_results)
        
        # Generate response using Gemini
        prompt = f"""{self.system_prompt}

MEDICAL CONTEXT FROM DATABASE:
{context}

USER QUESTION: {user_query}

INSTRUCTIONS:
Based on the medical context above, provide a helpful answer to the user's question. 
- Use information from the context when available
- If the context has relevant but not exact information, explain what you found
- Be clear and helpful
- End with: "⚠️ This is not medical advice. Consult healthcare professionals."

Answer the question:"""
        
        try:
            response = self.model.generate_content(
                prompt,
                generation_config={
                    "temperature": 0.3,  # Lower temperature for more factual responses
                    "top_p": 0.8,
                    "top_k": 40,
                    "max_output_tokens": 500,
                }
            )
            answer = response.text
        except Exception as e:
            answer = f"Error generating response: {str(e)}"
            print(f"DEBUG: Model error: {e}")
            print(f"DEBUG: Model object: {self.model}")
        
        # Calculate confidence
        similarity_scores = [r.score for r in filtered_results]
        confidence_level, confidence_score = self.calculate_confidence_score(similarity_scores)
        
        return {
            'response': answer,
            'confidence': confidence_level,
            'confidence_score': confidence_score,
            'sources': [r.metadata.get('source', 'unknown') for r in filtered_results],
            'citations': citation_map
        }
    
    def is_medical_related(self, query: str) -> bool:
        """Check if query is medical-related - very permissive"""
        query_lower = query.lower()
        
        # Comprehensive medical keywords
        medical_keywords = [
            'health', 'medical', 'disease', 'symptom', 'treatment', 'diagnosis',
            'medicine', 'patient', 'doctor', 'hospital', 'therapy', 'condition',
            'illness', 'sick', 'pain', 'cure', 'medication', 'physician',
            'nurse', 'clinical', 'healthcare', 'surgery', 'cure', 'heal',
            'blood', 'heart', 'lung', 'brain', 'cancer', 'diabetes', 'covid',
            'vaccine', 'pandemic', 'infection', 'fever', 'cough', 'ache',
            'eye', 'vision', 'irritation', 'red', 'tear', 'dry', 'irritated',
            'head', 'headache', 'stomach', 'nausea', 'dizzy', 'tired',
            'chest', 'breathing', 'breath', 'wheeze', 'nose', 'runny',
            'ear', 'throat', 'sore', 'inflam', 'swell', 'burn', 'itch',
            'suffering', 'problem', 'issue', 'hurt', 'injury', 'wound'
        ]
        
        # Accept any query that contains medical keywords or looks like a medical concern
        has_medical_keyword = any(keyword in query_lower for keyword in medical_keywords)
        
        # Also accept questions with medical-sounding patterns
        medical_patterns = [
            'i have', 'i am suffering', 'i feel', 'why do i', 'what should i',
            'why is', 'how to', 'how can i', 'what causes'
        ]
        has_medical_pattern = any(pattern in query_lower for pattern in medical_patterns)
        
        # Be permissive - if it sounds like a medical concern, accept it
        return has_medical_keyword or has_medical_pattern