Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| class Modulation(nn.Module): | |
| def __init__( | |
| self, | |
| embedding_dim: int, | |
| condition_dim: int, | |
| zero_init: bool = False, | |
| single_layer: bool = False, | |
| ): | |
| super().__init__() | |
| self.silu = nn.SiLU() | |
| if single_layer: | |
| self.linear1 = nn.Identity() | |
| else: | |
| self.linear1 = nn.Linear(condition_dim, condition_dim) | |
| self.linear2 = nn.Linear(condition_dim, embedding_dim * 2) | |
| # Only zero init the last linear layer | |
| if zero_init: | |
| nn.init.zeros_(self.linear2.weight) | |
| nn.init.zeros_(self.linear2.bias) | |
| def forward(self, x: torch.Tensor, condition: torch.Tensor) -> torch.Tensor: | |
| emb = self.linear2(self.silu(self.linear1(condition))) | |
| scale, shift = torch.chunk(emb, 2, dim=1) | |
| x = x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
| return x | |