Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,485 Bytes
bec50ac a1180f7 bec50ac a1180f7 bec50ac a1180f7 bec50ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import uuid
import json
import random
import asyncio
import logging
import time
import traceback
from html import escape
from langchain_core.messages.ai import AIMessageChunk
from langchain_core.messages.system import SystemMessage
from langchain_core.messages.tool import ToolMessage
from graph_helper import generate_graph
# Logging
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
thinking_verbs = [
"thinking",
"processing",
"crunching data",
"please wait",
"just a few more seconds",
"closing in",
"analyzing",
"reasoning",
"computing",
"synthesizing insight",
"searching through the cosmos",
"decoding ancient knowledge",
"scanning the scriptures",
"accessing divine memory",
"gathering wisdom",
"consulting the rishis",
"listening to the ātmā",
"channeling sacred energy",
"unfolding the divine word",
"meditating on the meaning",
"reciting from memory",
"traversing the Vedas",
"seeking the inner light",
"invoking paramārtha",
"putting it all together",
"digging deeper",
"making sense of it",
"connecting the dots",
"almost there",
"getting closer",
"wrapping it up",
"piecing it together",
"swirling through verses",
"diving into the ocean of knowledge",
"lighting the lamp of understanding",
"walking the path of inquiry",
"aligning stars of context",
]
graph = generate_graph()
def add_node_to_tree(
node_tree: list[str], node_label: str, tooltip: str = "no arguments to show"
) -> list[str]:
if tooltip:
tooltip = escape(tooltip).replace("'", "'")
node_with_tooltip = (
f"<span class='node-label' title='{tooltip}'>{node_label}</span>"
)
else:
node_with_tooltip = node_label
node_tree[-1] = node_with_tooltip
node_tree.append("<span class='spinner'> </span>")
return node_tree
def end_node_tree(node_tree: list[str]) -> list[str]:
node_tree[-1] = "🏁"
return node_tree
def get_args_for_toolcall(tool_calls_buffer: dict, tool_call_id: str):
return (
tool_calls_buffer[tool_call_id]["args_str"]
if tool_call_id in tool_calls_buffer
and "args_str" in tool_calls_buffer[tool_call_id]
else ""
)
async def chat_wrapper(
message, history, thread_id, debug, preferred_language="English"
):
if debug:
async for chunk in chat_streaming(
debug, message, history, thread_id, preferred_language=preferred_language
):
yield chunk
else:
response = chat(
debug, message, history, thread_id, preferred_language=preferred_language
)
yield response
def chat(debug_mode, message, history, thread_id, preferred_language="English"):
config = {"configurable": {"thread_id": thread_id}, "recursion_limit": 30}
response = graph.invoke(
{
"debug_mode": debug_mode,
"messages": [{"role": "user", "content": message}],
"language": preferred_language,
},
config=config,
)
return response["messages"][-1].content
async def chat_streaming(
debug_mode: bool, message, history, thread_id, preferred_language="English"
):
state = {
"debug_mode": debug_mode,
"messages": (history or []) + [{"role": "user", "content": message}],
"language": preferred_language,
}
config = {"configurable": {"thread_id": thread_id}, "recursion_limit": 30}
start_time = time.time()
streamed_response = ""
final_response = ""
# final_node = "validator"
MAX_CONTENT = 500
try:
node_tree = ["🚩", "<span class='spinner'> </span>"]
tool_calls_buffer = {}
async for msg, metadata in graph.astream(
state, config=config, stream_mode="messages"
):
node = metadata.get("langgraph_node", "?")
name = getattr(msg, "name", "-")
if not isinstance(msg, ToolMessage):
node_icon = "🧠"
else:
node_icon = "⚙️"
node_label = f"{node}"
tool_label = f"{name or ''}"
if tool_label:
node_label = node_label + f":{tool_label}"
label = f"{node_icon} {node_label}"
tooltip = ""
if isinstance(msg, ToolMessage):
tooltip = get_args_for_toolcall(tool_calls_buffer, msg.tool_call_id)
# logger.info("tooltip = ", tooltip)
# checking for -2 last but one. since last entry is always a spinner
if node_tree[-2] != label:
add_node_to_tree(node_tree, label, tooltip)
full: str = escape(msg.content)
truncated = (full[:MAX_CONTENT] + "…") if len(full) > MAX_CONTENT else full
def generate_processing_message():
return f"<div class='thinking-bubble'><em>🤔{random.choice(thinking_verbs)} ...</em></div>"
if (
not isinstance(msg, ToolMessage)
and not isinstance(msg, SystemMessage)
and not isinstance(msg, AIMessageChunk)
):
logger.info("msg = %s", msg)
if isinstance(msg, ToolMessage):
logger.debug("tool message = %s", msg)
html = f"<div class='thinking-bubble'><em>🤔 {msg.name} tool: {random.choice(thinking_verbs)} ...</em></div>"
yield f"### { ' → '.join(node_tree)}\n{html}"
elif isinstance(msg, AIMessageChunk):
def truncate_middle(text, front=50, back=50):
if not text:
return ""
if len(text) <= front + back:
return text
return f"{text[:front]}…{text[-back:]}".replace(
"\n", ""
) # remove new lines.
if not msg.content:
# logger.warning("*** No Message Chunk!")
yield f"### { " → ".join(node_tree)}\n{generate_processing_message()}\n<div class='intermediate-output'>{escape(truncate_middle(streamed_response))}</div>"
else:
# Stream intermediate messages with transparent style
# if node != final_node:
streamed_response += msg.content
yield f"### { ' → '.join(node_tree) }\n<div class='intermediate-output'>{escape(truncate_middle(streamed_response))}</div>"
# else:
# Buffer the final validated response instead of yielding
final_response += msg.content
if msg.tool_call_chunks:
for tool_call_chunk in msg.tool_call_chunks:
logger.debug("*** tool_call_chunk = ", tool_call_chunk)
if tool_call_chunk["id"] is not None:
tool_call_id = tool_call_chunk["id"]
if tool_call_id not in tool_calls_buffer:
tool_calls_buffer[tool_call_id] = {
"name": "",
"args_str": "",
"id": tool_call_id,
"type": "tool_call",
}
# Accumulate tool call name and arguments
if tool_call_chunk["name"] is not None:
tool_calls_buffer[tool_call_id]["name"] += tool_call_chunk[
"name"
]
if tool_call_chunk["args"] is not None:
tool_calls_buffer[tool_call_id][
"args_str"
] += tool_call_chunk["args"]
else:
logger.debug("message = ", type(msg), msg.content[:100])
full: str = escape(msg.content)
truncated = (
(full[:MAX_CONTENT] + "…") if len(full) > MAX_CONTENT else full
)
html = (
f"<div class='thinking-bubble'><em>🤔 {random.choice(thinking_verbs)} ...</em></div>"
f"<div style='opacity: 0.1'>"
f"<strong>Telling myself:</strong> {truncated or '...'}"
f"</div>"
)
yield f"### { " → ".join(node_tree)}\n{html}"
if getattr(msg, "tool_calls", []):
logger.info("ELSE::tool_calls = %s", msg.tool_calls)
node_tree[-1] = "✅"
end_time = time.time()
duration = end_time - start_time
final_response = (
f"\n{final_response}" f"\n\n⏱️ Processed in {duration:.2f} seconds"
)
buffer = f"### {' → '.join(node_tree)}\n"
yield buffer
for c in final_response:
buffer += c
yield buffer
await asyncio.sleep(0.0005)
logger.debug("************************************")
# Now, you can process the complete tool calls from the buffer
for tool_call_id, accumulated_tool_call in tool_calls_buffer.items():
# Attempt to parse arguments only if the 'args_str' isn't empty
if accumulated_tool_call["args_str"]:
try:
parsed_args = json.loads(accumulated_tool_call["args_str"])
logger.debug(f"Tool Name: {accumulated_tool_call['name']}")
logger.debug(f"Tool Arguments: {parsed_args}")
except json.JSONDecodeError:
logger.debug(
f"Partial arguments for tool {accumulated_tool_call['name']}: {accumulated_tool_call['args_str']}"
)
except asyncio.CancelledError:
logger.warning("⚠️ Request cancelled by user")
node_tree = end_node_tree(node_tree=node_tree)
yield (
f"### {' → '.join(node_tree)}"
"\n⚠️⚠️⚠️ Request cancelled by user"
"\nhere is what I got so far ...\n"
f"\n{streamed_response}"
)
# Important: re-raise if you want upstream to also know
# raise
return
except Exception as e:
logger.error("❌❌❌ Error processing request: %s", e)
traceback.print_exc()
node_tree = end_node_tree(node_tree=node_tree)
yield (
f"### { " → ".join(node_tree)}"
f"\n❌❌❌ Error processing request : {str(e)}"
"\nhere is what I got so far ...\n"
f"\n{streamed_response}"
)
return
def init_session():
return str(uuid.uuid4())
MAX_MESSAGES_IN_CONVERSATION = 5
async def limited_chat_wrapper(
message, history, thread_id, debug, preferred_language, count
):
# increment **after processing the message**
count += 1
# warn before reset
if count == MAX_MESSAGES_IN_CONVERSATION - 1:
yield [
{
"role": "system",
"content": "⚠️ You are allowed to ask one more follow-up. The next question will be considered a new conversation. Please wait ... processing your request ...",
}
], thread_id, count
await asyncio.sleep(1)
# reset
if count > MAX_MESSAGES_IN_CONVERSATION:
thread_id = init_session()
history = []
count = 1
yield [
{
"role": "system",
"content": "🔄 This is now considered a new question. Don't worry, your message shall still be processed! If I am giving irrelevant responses, you know why :-)",
}
], thread_id, count
await asyncio.sleep(1)
# normal flow: stream from your original chat_wrapper
final_chunk = []
async for chunk in chat_wrapper(
message, history, thread_id, debug, preferred_language
):
yield chunk, thread_id, count
final_chunk = chunk
# Simulating LLM Response
# for i in range(5):
# final_chunk += [{
# "role": "assistant",
# "content": f"Simulated LLM output {i+1}",
# }]
# yield final_chunk, thread_id, count
# await asyncio.sleep(0.25)
yield final_chunk, thread_id, count
|