Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload folder using huggingface_hub
Browse files- config.py +2 -1
- db.py +51 -2
- modules/db/reembed.py +4 -0
config.py
CHANGED
|
@@ -16,7 +16,8 @@ class SanatanConfig:
|
|
| 16 |
"name": "vishnu_puranam",
|
| 17 |
"title": "Sri Vishnu Puranam",
|
| 18 |
"output_dir": "./output/vishnu_puranam",
|
| 19 |
-
"collection_name": "
|
|
|
|
| 20 |
"metadata_fields": [
|
| 21 |
{"name": "file", "datatype": "str"},
|
| 22 |
{"name": "num_chars", "datatype": "str"},
|
|
|
|
| 16 |
"name": "vishnu_puranam",
|
| 17 |
"title": "Sri Vishnu Puranam",
|
| 18 |
"output_dir": "./output/vishnu_puranam",
|
| 19 |
+
"collection_name": "vishnu_puranam_openai",
|
| 20 |
+
"collection_embedding_fn": "openai",
|
| 21 |
"metadata_fields": [
|
| 22 |
{"name": "file", "datatype": "str"},
|
| 23 |
{"name": "num_chars", "datatype": "str"},
|
db.py
CHANGED
|
@@ -7,6 +7,7 @@ from pydantic import BaseModel
|
|
| 7 |
|
| 8 |
from metadata import MetadataFilter, MetadataWhereClause
|
| 9 |
from modules.db.relevance import validate_relevance_queryresult
|
|
|
|
| 10 |
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
logger.setLevel(logging.INFO)
|
|
@@ -53,7 +54,7 @@ class SanatanDatabase:
|
|
| 53 |
)
|
| 54 |
|
| 55 |
validated_response = validate_relevance_queryresult(query, response)
|
| 56 |
-
|
| 57 |
return validated_response["result"]
|
| 58 |
|
| 59 |
def search_for_literal(
|
|
@@ -175,6 +176,54 @@ class SanatanDatabase:
|
|
| 175 |
count = self.count(collection_name=scripture["collection_name"])
|
| 176 |
if count == 0:
|
| 177 |
raise Exception(f"No data in collection {scripture["collection_name"]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
|
| 180 |
if __name__ == "__main__":
|
|
@@ -213,4 +262,4 @@ if __name__ == "__main__":
|
|
| 213 |
# print("Document: ")
|
| 214 |
# print(response["documents"][0][0])
|
| 215 |
# print("Metadata: ")
|
| 216 |
-
# print(response["metadatas"][0][0])
|
|
|
|
| 7 |
|
| 8 |
from metadata import MetadataFilter, MetadataWhereClause
|
| 9 |
from modules.db.relevance import validate_relevance_queryresult
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
logger.setLevel(logging.INFO)
|
|
|
|
| 54 |
)
|
| 55 |
|
| 56 |
validated_response = validate_relevance_queryresult(query, response)
|
| 57 |
+
|
| 58 |
return validated_response["result"]
|
| 59 |
|
| 60 |
def search_for_literal(
|
|
|
|
| 176 |
count = self.count(collection_name=scripture["collection_name"])
|
| 177 |
if count == 0:
|
| 178 |
raise Exception(f"No data in collection {scripture["collection_name"]}")
|
| 179 |
+
|
| 180 |
+
def reembed_collection_openai(self, collection_name: str, batch_size: int = 50):
|
| 181 |
+
"""
|
| 182 |
+
Deletes and recreates a Chroma collection with OpenAI text-embedding-3-large embeddings.
|
| 183 |
+
All existing documents are re-embedded and inserted into the new collection.
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
collection_name: The name of the collection to delete/recreate.
|
| 187 |
+
batch_size: Number of documents to process per batch.
|
| 188 |
+
"""
|
| 189 |
+
# Step 1: Fetch old collection data (if exists)
|
| 190 |
+
try:
|
| 191 |
+
old_collection = self.chroma_client.get_collection(name=collection_name)
|
| 192 |
+
old_data = old_collection.get(include=["documents", "metadatas"])
|
| 193 |
+
documents = old_data["documents"]
|
| 194 |
+
metadatas = old_data["metadatas"]
|
| 195 |
+
ids = old_data["ids"]
|
| 196 |
+
print(f"Fetched {len(documents)} documents from old collection.")
|
| 197 |
+
|
| 198 |
+
# Step 2: Delete old collection
|
| 199 |
+
# self.chroma_client.delete_collection(collection_name)
|
| 200 |
+
# print(f"Deleted old collection '{collection_name}'.")
|
| 201 |
+
except chromadb.errors.NotFoundError:
|
| 202 |
+
print(f"No existing collection named '{collection_name}', starting fresh.")
|
| 203 |
+
documents, metadatas, ids = [], [], []
|
| 204 |
+
|
| 205 |
+
# Step 3: Create new collection with correct embedding dimension
|
| 206 |
+
new_collection = self.chroma_client.create_collection(
|
| 207 |
+
name=f"{collection_name}_openai",
|
| 208 |
+
embedding_function=None, # embeddings will be provided manually
|
| 209 |
+
)
|
| 210 |
+
print(f"Created new collection '{collection_name}_openai' with embedding_dim=3072.")
|
| 211 |
+
|
| 212 |
+
# Step 4: Re-embed and insert documents in batches
|
| 213 |
+
for i in tqdm(range(0, len(documents), batch_size), desc="Re-embedding batches"):
|
| 214 |
+
batch_docs = documents[i:i+batch_size]
|
| 215 |
+
batch_metadatas = metadatas[i:i+batch_size]
|
| 216 |
+
batch_ids = ids[i:i+batch_size]
|
| 217 |
+
|
| 218 |
+
embeddings = get_embedding(batch_docs, backend="openai")
|
| 219 |
+
|
| 220 |
+
new_collection.add(
|
| 221 |
+
ids=batch_ids,
|
| 222 |
+
documents=batch_docs,
|
| 223 |
+
metadatas=batch_metadatas,
|
| 224 |
+
embeddings=embeddings
|
| 225 |
+
)
|
| 226 |
+
print("All documents re-embedded and added to new collection successfully!")
|
| 227 |
|
| 228 |
|
| 229 |
if __name__ == "__main__":
|
|
|
|
| 262 |
# print("Document: ")
|
| 263 |
# print(response["documents"][0][0])
|
| 264 |
# print("Metadata: ")
|
| 265 |
+
# print(response["metadatas"][0][0])
|
modules/db/reembed.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from db import SanatanDatabase
|
| 2 |
+
|
| 3 |
+
if __name__ == "__main__":
|
| 4 |
+
SanatanDatabase().reembed_collection_openai(collection_name="vishnu_puranam")
|