Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload folder using huggingface_hub
Browse files- config.py +7 -0
- db.py +134 -137
- modules/youtube_metadata/answerer.py +3 -1
- modules/youtube_metadata/app.py +18 -16
- modules/youtube_metadata/channel_utils.py +3 -3
- modules/youtube_metadata/db.py +9 -28
- modules/youtube_metadata/indexer.py +3 -4
- modules/youtube_metadata/youtube_poller.py +11 -12
- modules/youtube_metadata/youtube_sync.py +1 -2
config.py
CHANGED
|
@@ -754,6 +754,13 @@ class SanatanConfig:
|
|
| 754 |
if scripture["collection_name"] == collection_name
|
| 755 |
][0]
|
| 756 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
def is_metadata_field_allowed(
|
| 758 |
self, collection_name: str, metadata_where_clause: MetadataWhereClause
|
| 759 |
):
|
|
|
|
| 754 |
if scripture["collection_name"] == collection_name
|
| 755 |
][0]
|
| 756 |
|
| 757 |
+
def get_scripture_by_name(self, scripture_name: str):
|
| 758 |
+
return [
|
| 759 |
+
scripture
|
| 760 |
+
for scripture in self.scriptures
|
| 761 |
+
if scripture["name"] == scripture_name
|
| 762 |
+
][0]
|
| 763 |
+
|
| 764 |
def is_metadata_field_allowed(
|
| 765 |
self, collection_name: str, metadata_where_clause: MetadataWhereClause
|
| 766 |
):
|
db.py
CHANGED
|
@@ -7,9 +7,8 @@ import re, unicodedata
|
|
| 7 |
from config import SanatanConfig
|
| 8 |
from embeddings import get_embedding
|
| 9 |
import logging
|
| 10 |
-
from pydantic import BaseModel
|
| 11 |
|
| 12 |
-
from metadata import
|
| 13 |
from modules.db.relevance import validate_relevance_queryresult
|
| 14 |
from tqdm import tqdm
|
| 15 |
|
|
@@ -59,7 +58,7 @@ class SanatanDatabase:
|
|
| 59 |
metadata_where_clause.to_chroma_where()
|
| 60 |
if metadata_where_clause is not None
|
| 61 |
else None
|
| 62 |
-
)
|
| 63 |
)
|
| 64 |
docs = data["documents"] # list of all verse texts
|
| 65 |
ids = data["ids"]
|
|
@@ -79,9 +78,7 @@ class SanatanDatabase:
|
|
| 79 |
)
|
| 80 |
|
| 81 |
def fetch_first_match(
|
| 82 |
-
self,
|
| 83 |
-
collection_name: str,
|
| 84 |
-
metadata_where_clause: MetadataWhereClause = None
|
| 85 |
):
|
| 86 |
"""This version is created to support the browse module"""
|
| 87 |
logger.info(
|
|
@@ -96,14 +93,14 @@ class SanatanDatabase:
|
|
| 96 |
metadata_where_clause.to_chroma_where()
|
| 97 |
if metadata_where_clause is not None
|
| 98 |
else None
|
| 99 |
-
)
|
| 100 |
)
|
| 101 |
|
| 102 |
if data["metadatas"]:
|
| 103 |
# find index of record with lowest _global_index
|
| 104 |
min_index = min(
|
| 105 |
range(len(data["metadatas"])),
|
| 106 |
-
key=lambda i: data["metadatas"][i].get("_global_index", float("inf"))
|
| 107 |
)
|
| 108 |
|
| 109 |
# shrink data to keep same structure but only one record
|
|
@@ -521,151 +518,151 @@ class SanatanDatabase:
|
|
| 521 |
|
| 522 |
return sorted(list(values))
|
| 523 |
|
| 524 |
-
def
|
| 525 |
-
|
| 526 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 527 |
|
| 528 |
-
|
| 529 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 530 |
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
logger.info(
|
| 537 |
-
"build_global_index_for_all_scriptures:%s: Processing", scripture_name
|
| 538 |
-
)
|
| 539 |
-
collection_name = scripture["collection_name"]
|
| 540 |
-
collection = self.chroma_client.get_or_create_collection(
|
| 541 |
-
name=collection_name
|
| 542 |
-
)
|
| 543 |
-
metadata_fields = scripture.get("metadata_fields", [])
|
| 544 |
-
|
| 545 |
-
# Get metadata field names marked as unique
|
| 546 |
-
unique_fields = [f["name"] for f in metadata_fields if f.get("is_unique")]
|
| 547 |
-
if not unique_fields:
|
| 548 |
-
if metadata_fields:
|
| 549 |
-
unique_fields = [metadata_fields[0]["name"]]
|
| 550 |
-
else:
|
| 551 |
-
logger.warning(
|
| 552 |
-
f"No metadata fields defined for {collection_name}, skipping"
|
| 553 |
-
)
|
| 554 |
-
continue
|
| 555 |
|
| 556 |
-
|
| 557 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
scripture_name,
|
| 559 |
-
|
| 560 |
)
|
|
|
|
| 561 |
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
|
|
|
| 569 |
scripture_name,
|
| 570 |
-
chapter_order_mapping,
|
| 571 |
)
|
|
|
|
| 572 |
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
)
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
| 584 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
|
| 586 |
-
|
| 587 |
-
metadatas = results["metadatas"]
|
| 588 |
-
documents = results["documents"]
|
| 589 |
-
embeddings = results.get("embeddings", [None] * len(ids))
|
| 590 |
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
"build_global_index_for_all_scriptures:%s: global index already available. skipping collection",
|
| 594 |
-
scripture_name,
|
| 595 |
-
)
|
| 596 |
-
continue
|
| 597 |
-
|
| 598 |
-
# Create a DataFrame for metadata sorting
|
| 599 |
-
df = pd.DataFrame(metadatas)
|
| 600 |
-
df["_id"] = ids
|
| 601 |
-
df["_doc"] = documents
|
| 602 |
-
|
| 603 |
-
# Add sortable columns for each unique field
|
| 604 |
-
for field_name in unique_fields:
|
| 605 |
-
if field_name.lower() == "chapter" and chapter_order_mapping:
|
| 606 |
-
# Map chapter names to their defined order
|
| 607 |
-
df["_sort_" + field_name] = (
|
| 608 |
-
df[field_name].map(chapter_order_mapping).fillna(np.inf)
|
| 609 |
-
)
|
| 610 |
-
else:
|
| 611 |
-
# Try numeric, fallback to string lowercase
|
| 612 |
-
def parse_val(v):
|
| 613 |
-
if v is None:
|
| 614 |
-
return float("inf")
|
| 615 |
-
if isinstance(v, int):
|
| 616 |
-
return v
|
| 617 |
-
if isinstance(v, str):
|
| 618 |
-
v = v.strip()
|
| 619 |
-
return int(v) if v.isdigit() else v.lower()
|
| 620 |
-
return str(v)
|
| 621 |
-
|
| 622 |
-
df["_sort_" + field_name] = df[field_name].apply(parse_val)
|
| 623 |
-
|
| 624 |
-
sort_cols = ["_sort_" + f for f in unique_fields]
|
| 625 |
-
df = df.sort_values(by=sort_cols, kind="stable").reset_index(drop=True)
|
| 626 |
-
|
| 627 |
-
# Assign global index
|
| 628 |
-
df["_global_index"] = range(1, len(df) + 1)
|
| 629 |
-
|
| 630 |
-
logger.info(
|
| 631 |
-
"build_global_index_for_all_scriptures:%s: updating database",
|
| 632 |
-
scripture_name,
|
| 633 |
-
)
|
| 634 |
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
for i in range(0, len(df), BATCH_SIZE):
|
| 638 |
-
batch_df = df.iloc[i : i + BATCH_SIZE]
|
| 639 |
-
batch_ids = batch_df["_id"].tolist()
|
| 640 |
-
batch_docs = batch_df["_doc"].tolist()
|
| 641 |
-
batch_metas = [
|
| 642 |
-
{k: record[k] for k in metadatas[0].keys() if k in record}
|
| 643 |
-
| {"_global_index": record["_global_index"]}
|
| 644 |
-
for record in batch_df.to_dict(orient="records")
|
| 645 |
-
]
|
| 646 |
-
# Use original metadata keys for upsert
|
| 647 |
-
batch_metas = [
|
| 648 |
-
{k: record[k] for k in metadatas[0].keys() if k in record}
|
| 649 |
-
| {"_global_index": record["_global_index"]}
|
| 650 |
-
for record in batch_df.to_dict(orient="records")
|
| 651 |
-
]
|
| 652 |
-
batch_embeds = [embeddings[idx] for idx in batch_df.index]
|
| 653 |
-
|
| 654 |
-
collection.update(
|
| 655 |
-
ids=batch_ids,
|
| 656 |
-
# documents=batch_docs,
|
| 657 |
-
metadatas=batch_metas,
|
| 658 |
-
# embeddings=batch_embeds,
|
| 659 |
-
)
|
| 660 |
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 665 |
)
|
| 666 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 667 |
def fix_taniyans_in_divya_prabandham(self):
|
| 668 |
-
nalayiram_helper.reorder_taniyan(
|
|
|
|
|
|
|
| 669 |
|
| 670 |
def delete_taniyans_in_divya_prabandham(self):
|
| 671 |
-
nalayiram_helper.delete_taniyan(
|
|
|
|
|
|
|
|
|
| 7 |
from config import SanatanConfig
|
| 8 |
from embeddings import get_embedding
|
| 9 |
import logging
|
|
|
|
| 10 |
|
| 11 |
+
from metadata import MetadataWhereClause
|
| 12 |
from modules.db.relevance import validate_relevance_queryresult
|
| 13 |
from tqdm import tqdm
|
| 14 |
|
|
|
|
| 58 |
metadata_where_clause.to_chroma_where()
|
| 59 |
if metadata_where_clause is not None
|
| 60 |
else None
|
| 61 |
+
),
|
| 62 |
)
|
| 63 |
docs = data["documents"] # list of all verse texts
|
| 64 |
ids = data["ids"]
|
|
|
|
| 78 |
)
|
| 79 |
|
| 80 |
def fetch_first_match(
|
| 81 |
+
self, collection_name: str, metadata_where_clause: MetadataWhereClause = None
|
|
|
|
|
|
|
| 82 |
):
|
| 83 |
"""This version is created to support the browse module"""
|
| 84 |
logger.info(
|
|
|
|
| 93 |
metadata_where_clause.to_chroma_where()
|
| 94 |
if metadata_where_clause is not None
|
| 95 |
else None
|
| 96 |
+
),
|
| 97 |
)
|
| 98 |
|
| 99 |
if data["metadatas"]:
|
| 100 |
# find index of record with lowest _global_index
|
| 101 |
min_index = min(
|
| 102 |
range(len(data["metadatas"])),
|
| 103 |
+
key=lambda i: data["metadatas"][i].get("_global_index", float("inf")),
|
| 104 |
)
|
| 105 |
|
| 106 |
# shrink data to keep same structure but only one record
|
|
|
|
| 518 |
|
| 519 |
return sorted(list(values))
|
| 520 |
|
| 521 |
+
def build_global_index_for_scripture(self, scripture: dict, force: bool = False):
|
| 522 |
+
scripture_name = scripture["name"]
|
| 523 |
+
chapter_order = scripture.get("chapter_order", None)
|
| 524 |
+
# if scripture_name != "vishnu_sahasranamam":
|
| 525 |
+
# continue
|
| 526 |
+
logger.info(
|
| 527 |
+
"build_global_index_for_all_scriptures:%s: Processing", scripture_name
|
| 528 |
+
)
|
| 529 |
+
collection_name = scripture["collection_name"]
|
| 530 |
+
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 531 |
+
metadata_fields = scripture.get("metadata_fields", [])
|
| 532 |
|
| 533 |
+
# Get metadata field names marked as unique
|
| 534 |
+
unique_fields = [f["name"] for f in metadata_fields if f.get("is_unique")]
|
| 535 |
+
if not unique_fields:
|
| 536 |
+
if metadata_fields:
|
| 537 |
+
unique_fields = [metadata_fields[0]["name"]]
|
| 538 |
+
else:
|
| 539 |
+
logger.warning(
|
| 540 |
+
f"No metadata fields defined for {collection_name}, skipping"
|
| 541 |
+
)
|
| 542 |
+
return
|
| 543 |
|
| 544 |
+
logger.info(
|
| 545 |
+
"build_global_index_for_all_scriptures:%s:unique fields: %s",
|
| 546 |
+
scripture_name,
|
| 547 |
+
unique_fields,
|
| 548 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 549 |
|
| 550 |
+
# Build chapter_order mapping if defined
|
| 551 |
+
chapter_order_mapping = {}
|
| 552 |
+
for field in metadata_fields:
|
| 553 |
+
if callable(chapter_order):
|
| 554 |
+
chapter_order_mapping = chapter_order()
|
| 555 |
+
logger.info(
|
| 556 |
+
"build_global_index_for_all_scriptures:%s:chapter_order_mapping: %s",
|
| 557 |
+
scripture_name,
|
| 558 |
+
chapter_order_mapping,
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
# Fetch all records (keep embeddings for upsert)
|
| 562 |
+
try:
|
| 563 |
+
results = collection.get(include=["metadatas", "documents", "embeddings"])
|
| 564 |
+
except Exception as e:
|
| 565 |
+
logger.error(
|
| 566 |
+
"build_global_index_for_all_scriptures:%s Error getting data from chromadb",
|
| 567 |
scripture_name,
|
| 568 |
+
exc_info=True,
|
| 569 |
)
|
| 570 |
+
return
|
| 571 |
|
| 572 |
+
ids = results["ids"]
|
| 573 |
+
metadatas = results["metadatas"]
|
| 574 |
+
documents = results["documents"]
|
| 575 |
+
embeddings = results.get("embeddings", [None] * len(ids))
|
| 576 |
+
|
| 577 |
+
if not force and metadatas and "_global_index" in metadatas[0]:
|
| 578 |
+
logger.warning(
|
| 579 |
+
"build_global_index_for_all_scriptures:%s: global index already available. skipping collection",
|
| 580 |
scripture_name,
|
|
|
|
| 581 |
)
|
| 582 |
+
return
|
| 583 |
|
| 584 |
+
# Create a DataFrame for metadata sorting
|
| 585 |
+
df = pd.DataFrame(metadatas)
|
| 586 |
+
df["_id"] = ids
|
| 587 |
+
df["_doc"] = documents
|
| 588 |
+
|
| 589 |
+
# Add sortable columns for each unique field
|
| 590 |
+
for field_name in unique_fields:
|
| 591 |
+
if field_name.lower() == "chapter" and chapter_order_mapping:
|
| 592 |
+
# Map chapter names to their defined order
|
| 593 |
+
df["_sort_" + field_name] = (
|
| 594 |
+
df[field_name].map(chapter_order_mapping).fillna(np.inf)
|
| 595 |
)
|
| 596 |
+
else:
|
| 597 |
+
# Try numeric, fallback to string lowercase
|
| 598 |
+
def parse_val(v):
|
| 599 |
+
if v is None:
|
| 600 |
+
return float("inf")
|
| 601 |
+
if isinstance(v, int):
|
| 602 |
+
return v
|
| 603 |
+
if isinstance(v, str):
|
| 604 |
+
v = v.strip()
|
| 605 |
+
return int(v) if v.isdigit() else v.lower()
|
| 606 |
+
return str(v)
|
| 607 |
|
| 608 |
+
df["_sort_" + field_name] = df[field_name].apply(parse_val)
|
|
|
|
|
|
|
|
|
|
| 609 |
|
| 610 |
+
sort_cols = ["_sort_" + f for f in unique_fields]
|
| 611 |
+
df = df.sort_values(by=sort_cols, kind="stable").reset_index(drop=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
|
| 613 |
+
# Assign global index
|
| 614 |
+
df["_global_index"] = range(1, len(df) + 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 615 |
|
| 616 |
+
logger.info(
|
| 617 |
+
"build_global_index_for_all_scriptures:%s: updating database",
|
| 618 |
+
scripture_name,
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
# Batch upsert
|
| 622 |
+
BATCH_SIZE = 5000 # safely below max batch size
|
| 623 |
+
for i in range(0, len(df), BATCH_SIZE):
|
| 624 |
+
batch_df = df.iloc[i : i + BATCH_SIZE]
|
| 625 |
+
batch_ids = batch_df["_id"].tolist()
|
| 626 |
+
batch_docs = batch_df["_doc"].tolist()
|
| 627 |
+
batch_metas = [
|
| 628 |
+
{k: record[k] for k in metadatas[0].keys() if k in record}
|
| 629 |
+
| {"_global_index": record["_global_index"]}
|
| 630 |
+
for record in batch_df.to_dict(orient="records")
|
| 631 |
+
]
|
| 632 |
+
# Use original metadata keys for upsert
|
| 633 |
+
batch_metas = [
|
| 634 |
+
{k: record[k] for k in metadatas[0].keys() if k in record}
|
| 635 |
+
| {"_global_index": record["_global_index"]}
|
| 636 |
+
for record in batch_df.to_dict(orient="records")
|
| 637 |
+
]
|
| 638 |
+
batch_embeds = [embeddings[idx] for idx in batch_df.index]
|
| 639 |
+
|
| 640 |
+
collection.update(
|
| 641 |
+
ids=batch_ids,
|
| 642 |
+
# documents=batch_docs,
|
| 643 |
+
metadatas=batch_metas,
|
| 644 |
+
# embeddings=batch_embeds,
|
| 645 |
)
|
| 646 |
|
| 647 |
+
logger.info(
|
| 648 |
+
"build_global_index_for_all_scriptures:%s: ✅ Updated with %d records",
|
| 649 |
+
scripture_name,
|
| 650 |
+
len(df),
|
| 651 |
+
)
|
| 652 |
+
|
| 653 |
+
def build_global_index_for_all_scriptures(self, force: bool = False):
|
| 654 |
+
logger.info("build_global_index_for_all_scriptures: started")
|
| 655 |
+
config = SanatanConfig()
|
| 656 |
+
|
| 657 |
+
for scripture in config.scriptures:
|
| 658 |
+
self.build_global_index_for_scripture(scripture=scripture, force=force)
|
| 659 |
+
|
| 660 |
def fix_taniyans_in_divya_prabandham(self):
|
| 661 |
+
nalayiram_helper.reorder_taniyan(
|
| 662 |
+
self.chroma_client.get_collection("divya_prabandham")
|
| 663 |
+
)
|
| 664 |
|
| 665 |
def delete_taniyans_in_divya_prabandham(self):
|
| 666 |
+
nalayiram_helper.delete_taniyan(
|
| 667 |
+
self.chroma_client.get_collection("divya_prabandham")
|
| 668 |
+
)
|
modules/youtube_metadata/answerer.py
CHANGED
|
@@ -4,6 +4,7 @@
|
|
| 4 |
from typing import List
|
| 5 |
from pydantic import BaseModel
|
| 6 |
from openai import OpenAI
|
|
|
|
| 7 |
from modules.youtube_metadata.retriever import retrieve_videos
|
| 8 |
|
| 9 |
|
|
@@ -26,12 +27,13 @@ class LLMAnswer(BaseModel):
|
|
| 26 |
# Main Function
|
| 27 |
# -------------------------------
|
| 28 |
def answer_query(
|
| 29 |
-
query: str,
|
| 30 |
) -> LLMAnswer:
|
| 31 |
"""
|
| 32 |
Answer a user query using YouTube video metadata.
|
| 33 |
Returns an LLMAnswer object with textual answer + list of videos.
|
| 34 |
"""
|
|
|
|
| 35 |
results = retrieve_videos(query, collection, top_k=top_k, channel_id=channel_id)
|
| 36 |
|
| 37 |
if not results:
|
|
|
|
| 4 |
from typing import List
|
| 5 |
from pydantic import BaseModel
|
| 6 |
from openai import OpenAI
|
| 7 |
+
from modules.youtube_metadata.db import get_youtube_metadata_collection
|
| 8 |
from modules.youtube_metadata.retriever import retrieve_videos
|
| 9 |
|
| 10 |
|
|
|
|
| 27 |
# Main Function
|
| 28 |
# -------------------------------
|
| 29 |
def answer_query(
|
| 30 |
+
query: str, top_k: int = 5, channel_id: str = None
|
| 31 |
) -> LLMAnswer:
|
| 32 |
"""
|
| 33 |
Answer a user query using YouTube video metadata.
|
| 34 |
Returns an LLMAnswer object with textual answer + list of videos.
|
| 35 |
"""
|
| 36 |
+
collection = get_youtube_metadata_collection()
|
| 37 |
results = retrieve_videos(query, collection, top_k=top_k, channel_id=channel_id)
|
| 38 |
|
| 39 |
if not results:
|
modules/youtube_metadata/app.py
CHANGED
|
@@ -1,14 +1,13 @@
|
|
| 1 |
-
import asyncio
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
-
import threading
|
| 5 |
import gradio as gr
|
| 6 |
from gradio_modal import Modal
|
|
|
|
|
|
|
| 7 |
from modules.youtube_metadata.downloader import export_channel_json
|
| 8 |
from modules.youtube_metadata.channel_utils import fetch_channel_dataframe
|
| 9 |
from modules.youtube_metadata.db import (
|
| 10 |
delete_channel_from_collection,
|
| 11 |
-
get_collection,
|
| 12 |
get_indexed_channels,
|
| 13 |
)
|
| 14 |
from modules.youtube_metadata.answerer import answer_query
|
|
@@ -16,6 +15,11 @@ from dotenv import load_dotenv
|
|
| 16 |
|
| 17 |
from modules.youtube_metadata.youtube_poller import start_poll
|
| 18 |
from modules.youtube_metadata.youtube_sync import sync_channels_from_youtube
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
load_dotenv()
|
| 21 |
|
|
@@ -89,9 +93,9 @@ def index_channels(channel_urls: str):
|
|
| 89 |
def youtube_metadata_init(progress: gr.Progress = None):
|
| 90 |
channels = (
|
| 91 |
"https://www.youtube.com/@onedayonepasuram6126,"
|
| 92 |
-
"https://www.youtube.com/@srisookthi,"
|
| 93 |
-
"https://www.youtube.com/@learn-aksharam,"
|
| 94 |
-
"https://www.youtube.com/@SriYadugiriYathirajaMutt,"
|
| 95 |
"https://www.youtube.com/@akivasudev,"
|
| 96 |
"https://www.youtube.com/@Arulicheyal_Amutham"
|
| 97 |
)
|
|
@@ -102,7 +106,7 @@ def youtube_metadata_init(progress: gr.Progress = None):
|
|
| 102 |
|
| 103 |
def refresh_all_channels():
|
| 104 |
yt_api_key = os.environ["YOUTUBE_API_KEY"]
|
| 105 |
-
channels = get_indexed_channels(
|
| 106 |
|
| 107 |
if not channels:
|
| 108 |
return "⚠️ No channels available to refresh.", refresh_channel_list()
|
|
@@ -127,7 +131,7 @@ def refresh_all_channels():
|
|
| 127 |
# Channel selection as radio
|
| 128 |
# -------------------------------
|
| 129 |
def list_channels_radio():
|
| 130 |
-
channels = get_indexed_channels(
|
| 131 |
choices = []
|
| 132 |
for key, val in channels.items():
|
| 133 |
if isinstance(val, dict):
|
|
@@ -155,7 +159,7 @@ def delete_channel(channel_url: str):
|
|
| 155 |
# -------------------------------
|
| 156 |
def handle_query(query: str, search_channel_id: str):
|
| 157 |
answer_text, video_html = answer_query(
|
| 158 |
-
query,
|
| 159 |
)
|
| 160 |
if not answer_text:
|
| 161 |
answer_text = "No answer available."
|
|
@@ -480,15 +484,13 @@ with gr.Blocks(title="Sanatana AI - Youtube Metadata Surfer") as youtube_metadat
|
|
| 480 |
|
| 481 |
|
| 482 |
def initialize_youtube_metadata_and_poll():
|
| 483 |
-
# Step 1: Initialize metadata
|
| 484 |
for msg in youtube_metadata_init():
|
| 485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 486 |
|
| 487 |
-
# Step 2: Start polling after init
|
| 488 |
-
start_poll() # run in the same thread
|
| 489 |
-
# OR if you want it in a separate daemon thread:
|
| 490 |
-
# poll_thread = threading.Thread(target=start_poll, daemon=True)
|
| 491 |
-
# poll_thread.start()
|
| 492 |
|
| 493 |
if __name__ == "__main__":
|
| 494 |
initialize_youtube_metadata_and_poll()
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
from gradio_modal import Modal
|
| 5 |
+
from config import SanatanConfig
|
| 6 |
+
from db import SanatanDatabase
|
| 7 |
from modules.youtube_metadata.downloader import export_channel_json
|
| 8 |
from modules.youtube_metadata.channel_utils import fetch_channel_dataframe
|
| 9 |
from modules.youtube_metadata.db import (
|
| 10 |
delete_channel_from_collection,
|
|
|
|
| 11 |
get_indexed_channels,
|
| 12 |
)
|
| 13 |
from modules.youtube_metadata.answerer import answer_query
|
|
|
|
| 15 |
|
| 16 |
from modules.youtube_metadata.youtube_poller import start_poll
|
| 17 |
from modules.youtube_metadata.youtube_sync import sync_channels_from_youtube
|
| 18 |
+
import logging
|
| 19 |
+
|
| 20 |
+
logging.basicConfig()
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
logger.setLevel(logging.INFO)
|
| 23 |
|
| 24 |
load_dotenv()
|
| 25 |
|
|
|
|
| 93 |
def youtube_metadata_init(progress: gr.Progress = None):
|
| 94 |
channels = (
|
| 95 |
"https://www.youtube.com/@onedayonepasuram6126,"
|
| 96 |
+
# "https://www.youtube.com/@srisookthi,"
|
| 97 |
+
# "https://www.youtube.com/@learn-aksharam,"
|
| 98 |
+
# "https://www.youtube.com/@SriYadugiriYathirajaMutt,"
|
| 99 |
"https://www.youtube.com/@akivasudev,"
|
| 100 |
"https://www.youtube.com/@Arulicheyal_Amutham"
|
| 101 |
)
|
|
|
|
| 106 |
|
| 107 |
def refresh_all_channels():
|
| 108 |
yt_api_key = os.environ["YOUTUBE_API_KEY"]
|
| 109 |
+
channels = get_indexed_channels()
|
| 110 |
|
| 111 |
if not channels:
|
| 112 |
return "⚠️ No channels available to refresh.", refresh_channel_list()
|
|
|
|
| 131 |
# Channel selection as radio
|
| 132 |
# -------------------------------
|
| 133 |
def list_channels_radio():
|
| 134 |
+
channels = get_indexed_channels()
|
| 135 |
choices = []
|
| 136 |
for key, val in channels.items():
|
| 137 |
if isinstance(val, dict):
|
|
|
|
| 159 |
# -------------------------------
|
| 160 |
def handle_query(query: str, search_channel_id: str):
|
| 161 |
answer_text, video_html = answer_query(
|
| 162 |
+
query, channel_id=search_channel_id, top_k=10
|
| 163 |
)
|
| 164 |
if not answer_text:
|
| 165 |
answer_text = "No answer available."
|
|
|
|
| 484 |
|
| 485 |
|
| 486 |
def initialize_youtube_metadata_and_poll():
|
|
|
|
| 487 |
for msg in youtube_metadata_init():
|
| 488 |
+
logger.info("initialize_youtube_metadata_and_poll: %s", msg)
|
| 489 |
+
SanatanDatabase().build_global_index_for_scripture(
|
| 490 |
+
scripture=SanatanConfig().get_scripture_by_name("yt_metadata"), force=True
|
| 491 |
+
)
|
| 492 |
+
start_poll()
|
| 493 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 494 |
|
| 495 |
if __name__ == "__main__":
|
| 496 |
initialize_youtube_metadata_and_poll()
|
modules/youtube_metadata/channel_utils.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from modules.youtube_metadata.db import
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
page_size = 10 # change if you like
|
|
@@ -8,7 +8,7 @@ page_size = 10 # change if you like
|
|
| 8 |
# Fetch channel videos as HTML table with pagination
|
| 9 |
# -------------------------------
|
| 10 |
def fetch_channel_html(channel_id: str, page: int = 1, page_size: int = 10):
|
| 11 |
-
collection =
|
| 12 |
offset = (page - 1) * page_size
|
| 13 |
|
| 14 |
all_results = collection.get(
|
|
@@ -73,7 +73,7 @@ def fetch_channel_html(channel_id: str, page: int = 1, page_size: int = 10):
|
|
| 73 |
# Fetch channel videos as HTML table with pagination
|
| 74 |
# -------------------------------
|
| 75 |
def fetch_channel_dataframe(channel_id: str):
|
| 76 |
-
collection =
|
| 77 |
|
| 78 |
results = collection.get(
|
| 79 |
where={"channel_id": channel_id}, include=["documents", "metadatas"]
|
|
|
|
| 1 |
+
from modules.youtube_metadata.db import get_youtube_metadata_collection
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
page_size = 10 # change if you like
|
|
|
|
| 8 |
# Fetch channel videos as HTML table with pagination
|
| 9 |
# -------------------------------
|
| 10 |
def fetch_channel_html(channel_id: str, page: int = 1, page_size: int = 10):
|
| 11 |
+
collection = get_youtube_metadata_collection()
|
| 12 |
offset = (page - 1) * page_size
|
| 13 |
|
| 14 |
all_results = collection.get(
|
|
|
|
| 73 |
# Fetch channel videos as HTML table with pagination
|
| 74 |
# -------------------------------
|
| 75 |
def fetch_channel_dataframe(channel_id: str):
|
| 76 |
+
collection = get_youtube_metadata_collection()
|
| 77 |
|
| 78 |
results = collection.get(
|
| 79 |
where={"channel_id": channel_id}, include=["documents", "metadatas"]
|
modules/youtube_metadata/db.py
CHANGED
|
@@ -1,38 +1,19 @@
|
|
| 1 |
import chromadb
|
| 2 |
|
| 3 |
from config import SanatanConfig
|
|
|
|
| 4 |
|
| 5 |
config = SanatanConfig()
|
| 6 |
YT_METADATA_COLLECTION_NAME = config.get_collection_name(scripture_name="yt_metadata")
|
|
|
|
| 7 |
|
| 8 |
-
def
|
| 9 |
-
client =
|
| 10 |
-
return client
|
| 11 |
|
| 12 |
|
| 13 |
-
def
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
# Ensure fresh collection with correct dimension
|
| 17 |
-
try:
|
| 18 |
-
collection = client.get_collection(YT_METADATA_COLLECTION_NAME)
|
| 19 |
-
except Exception:
|
| 20 |
-
collection = client.create_collection(YT_METADATA_COLLECTION_NAME)
|
| 21 |
-
|
| 22 |
-
# # Check dimension mismatch
|
| 23 |
-
# try:
|
| 24 |
-
# # quick test query
|
| 25 |
-
# collection.query(query_embeddings=[[0.0] * 1536], n_results=1)
|
| 26 |
-
# except Exception:
|
| 27 |
-
# # Delete and recreate with fresh schema
|
| 28 |
-
# client.delete_collection("yt_metadata")
|
| 29 |
-
# collection = client.create_collection("yt_metadata")
|
| 30 |
-
|
| 31 |
-
return collection
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# modules/db.py
|
| 35 |
-
def get_indexed_channels(collection=get_collection()):
|
| 36 |
results = collection.get(include=["metadatas"])
|
| 37 |
channels = {}
|
| 38 |
|
|
@@ -55,11 +36,11 @@ def delete_channel_from_collection(channel_id: str):
|
|
| 55 |
# print("Deleting channel", channel_id)
|
| 56 |
|
| 57 |
# print("data = ", data)
|
| 58 |
-
|
| 59 |
|
| 60 |
|
| 61 |
def fetch_channel_data(channel_id: str):
|
| 62 |
-
data =
|
| 63 |
where={"channel_id": channel_id}, include=["embeddings", "metadatas", "documents"]
|
| 64 |
)
|
| 65 |
return data
|
|
|
|
| 1 |
import chromadb
|
| 2 |
|
| 3 |
from config import SanatanConfig
|
| 4 |
+
from db import SanatanDatabase
|
| 5 |
|
| 6 |
config = SanatanConfig()
|
| 7 |
YT_METADATA_COLLECTION_NAME = config.get_collection_name(scripture_name="yt_metadata")
|
| 8 |
+
db = SanatanDatabase()
|
| 9 |
|
| 10 |
+
def get_youtube_metadata_collection():
|
| 11 |
+
client = db.chroma_client
|
| 12 |
+
return client.get_or_create_collection(YT_METADATA_COLLECTION_NAME)
|
| 13 |
|
| 14 |
|
| 15 |
+
def get_indexed_channels():
|
| 16 |
+
collection=get_youtube_metadata_collection()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
results = collection.get(include=["metadatas"])
|
| 18 |
channels = {}
|
| 19 |
|
|
|
|
| 36 |
# print("Deleting channel", channel_id)
|
| 37 |
|
| 38 |
# print("data = ", data)
|
| 39 |
+
get_youtube_metadata_collection().delete(where={"channel_id": channel_id})
|
| 40 |
|
| 41 |
|
| 42 |
def fetch_channel_data(channel_id: str):
|
| 43 |
+
data = get_youtube_metadata_collection().get(
|
| 44 |
where={"channel_id": channel_id}, include=["embeddings", "metadatas", "documents"]
|
| 45 |
)
|
| 46 |
return data
|
modules/youtube_metadata/indexer.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# modules/indexer.py
|
| 2 |
from typing import Dict, List
|
| 3 |
-
from
|
| 4 |
from modules.youtube_metadata.embeddings import get_embedding
|
| 5 |
import logging
|
| 6 |
|
|
@@ -10,10 +10,9 @@ logger.setLevel(logging.INFO)
|
|
| 10 |
|
| 11 |
|
| 12 |
def index_videos(
|
| 13 |
-
videos: List[Dict],
|
| 14 |
):
|
| 15 |
-
|
| 16 |
-
|
| 17 |
total = len(videos)
|
| 18 |
logger.info(
|
| 19 |
f"index_videos: [INDEX] Starting indexing for {total} videos (channel={channel_url})"
|
|
|
|
| 1 |
# modules/indexer.py
|
| 2 |
from typing import Dict, List
|
| 3 |
+
from modules.youtube_metadata.db import get_youtube_metadata_collection
|
| 4 |
from modules.youtube_metadata.embeddings import get_embedding
|
| 5 |
import logging
|
| 6 |
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def index_videos(
|
| 13 |
+
videos: List[Dict], channel_url: str, batch_size: int = 50
|
| 14 |
):
|
| 15 |
+
collection = get_youtube_metadata_collection()
|
|
|
|
| 16 |
total = len(videos)
|
| 17 |
logger.info(
|
| 18 |
f"index_videos: [INDEX] Starting indexing for {total} videos (channel={channel_url})"
|
modules/youtube_metadata/youtube_poller.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from chromadb import Collection
|
| 2 |
import feedparser
|
| 3 |
-
from modules.youtube_metadata.db import
|
| 4 |
from modules.youtube_metadata.embeddings import get_embedding
|
| 5 |
import logging
|
| 6 |
|
|
@@ -65,22 +65,20 @@ def filter_new_videos(videos, existing_ids):
|
|
| 65 |
def add_to_chroma(collection: Collection, new_videos):
|
| 66 |
if not new_videos:
|
| 67 |
return
|
|
|
|
| 68 |
collection.add(
|
| 69 |
-
documents=[v[
|
| 70 |
embeddings=[get_embedding(v["title"]) for v in new_videos],
|
| 71 |
metadatas=[
|
| 72 |
-
{
|
| 73 |
-
|
| 74 |
-
"channel_id": v["channel_id"],
|
| 75 |
-
"link": v["link"],
|
| 76 |
-
}
|
| 77 |
-
for v in new_videos
|
| 78 |
],
|
| 79 |
ids=[v["video_id"] for v in new_videos],
|
| 80 |
)
|
| 81 |
|
| 82 |
|
| 83 |
-
def incremental_update(
|
|
|
|
| 84 |
existing_ids = get_existing_video_ids(collection, channel_id)
|
| 85 |
latest_videos = fetch_channel_videos_rss(channel_id)
|
| 86 |
new_videos = filter_new_videos(latest_videos, existing_ids)
|
|
@@ -88,10 +86,10 @@ def incremental_update(collection, channel_id):
|
|
| 88 |
if new_videos:
|
| 89 |
add_to_chroma(collection, new_videos)
|
| 90 |
logger.info(
|
| 91 |
-
f"incremental_update: Added {len(new_videos)} new videos from {channel_id}"
|
| 92 |
)
|
| 93 |
else:
|
| 94 |
-
logger.info(f"incremental_uddate: No new videos for {channel_id}")
|
| 95 |
|
| 96 |
|
| 97 |
def start_poll():
|
|
@@ -101,5 +99,6 @@ def start_poll():
|
|
| 101 |
|
| 102 |
while True:
|
| 103 |
for channel_id in configured_channels:
|
| 104 |
-
incremental_update(
|
|
|
|
| 105 |
time.sleep(600) # 10 minutes
|
|
|
|
| 1 |
from chromadb import Collection
|
| 2 |
import feedparser
|
| 3 |
+
from modules.youtube_metadata.db import get_youtube_metadata_collection, get_indexed_channels
|
| 4 |
from modules.youtube_metadata.embeddings import get_embedding
|
| 5 |
import logging
|
| 6 |
|
|
|
|
| 65 |
def add_to_chroma(collection: Collection, new_videos):
|
| 66 |
if not new_videos:
|
| 67 |
return
|
| 68 |
+
count = collection.count()
|
| 69 |
collection.add(
|
| 70 |
+
documents=[f"{v['title']} - v['description']" for v in new_videos],
|
| 71 |
embeddings=[get_embedding(v["title"]) for v in new_videos],
|
| 72 |
metadatas=[
|
| 73 |
+
{**v, "_global_index": i}
|
| 74 |
+
for i, v in enumerate(new_videos, start=count)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
],
|
| 76 |
ids=[v["video_id"] for v in new_videos],
|
| 77 |
)
|
| 78 |
|
| 79 |
|
| 80 |
+
def incremental_update(channel_id):
|
| 81 |
+
collection = get_youtube_metadata_collection()
|
| 82 |
existing_ids = get_existing_video_ids(collection, channel_id)
|
| 83 |
latest_videos = fetch_channel_videos_rss(channel_id)
|
| 84 |
new_videos = filter_new_videos(latest_videos, existing_ids)
|
|
|
|
| 86 |
if new_videos:
|
| 87 |
add_to_chroma(collection, new_videos)
|
| 88 |
logger.info(
|
| 89 |
+
f"youtube_poller: incremental_update: Added {len(new_videos)} new videos from {channel_id}"
|
| 90 |
)
|
| 91 |
else:
|
| 92 |
+
logger.info(f"youtube_poller: incremental_uddate: No new videos for {channel_id}")
|
| 93 |
|
| 94 |
|
| 95 |
def start_poll():
|
|
|
|
| 99 |
|
| 100 |
while True:
|
| 101 |
for channel_id in configured_channels:
|
| 102 |
+
incremental_update(channel_id)
|
| 103 |
+
logger.info("youtube_poller: Sleeping for 10 minutes")
|
| 104 |
time.sleep(600) # 10 minutes
|
modules/youtube_metadata/youtube_sync.py
CHANGED
|
@@ -3,7 +3,6 @@ import gradio as gr
|
|
| 3 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 4 |
|
| 5 |
from modules.youtube_metadata.collector import fetch_all_channel_videos
|
| 6 |
-
from modules.youtube_metadata.db import get_collection
|
| 7 |
from modules.youtube_metadata.indexer import index_videos
|
| 8 |
|
| 9 |
# global stop signal
|
|
@@ -51,7 +50,7 @@ def _refresh_single_channel(api_key, channel_url, progress):
|
|
| 51 |
|
| 52 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
| 53 |
futures = [
|
| 54 |
-
executor.submit(index_videos, batch,
|
| 55 |
for _, batch in fetched_batches
|
| 56 |
]
|
| 57 |
|
|
|
|
| 3 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
| 4 |
|
| 5 |
from modules.youtube_metadata.collector import fetch_all_channel_videos
|
|
|
|
| 6 |
from modules.youtube_metadata.indexer import index_videos
|
| 7 |
|
| 8 |
# global stop signal
|
|
|
|
| 50 |
|
| 51 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
| 52 |
futures = [
|
| 53 |
+
executor.submit(index_videos, batch, channel_url=channel_url)
|
| 54 |
for _, batch in fetched_batches
|
| 55 |
]
|
| 56 |
|