Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload folder using huggingface_hub
Browse files- app.py +46 -12
- db.py +62 -7
- graph_helper.py +2 -0
- sanatan_assistant.py +33 -0
- tools.py +11 -2
app.py
CHANGED
|
@@ -107,6 +107,11 @@ def chat(message, history, thread_id):
|
|
| 107 |
return response["messages"][-1].content
|
| 108 |
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
async def chat_streaming(message, history, thread_id):
|
| 111 |
state = {"messages": (history or []) + [{"role": "user", "content": message}]}
|
| 112 |
config = {"configurable": {"thread_id": thread_id}}
|
|
@@ -117,48 +122,58 @@ async def chat_streaming(message, history, thread_id):
|
|
| 117 |
|
| 118 |
try:
|
| 119 |
tool_calls = []
|
|
|
|
| 120 |
async for msg, metadata in graph.astream(
|
| 121 |
state, config=config, stream_mode="messages"
|
| 122 |
):
|
| 123 |
node = metadata.get("langgraph_node", "?")
|
| 124 |
name = getattr(msg, "name", "-")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
full: str = escape(msg.content)
|
| 126 |
truncated = (full[:MAX_CONTENT] + "…") if len(full) > MAX_CONTENT else full
|
| 127 |
|
| 128 |
-
|
|
|
|
| 129 |
f"<div class='thinking-bubble'><em>🤔{random.choice(thinking_verbs)} ...</em></div>"
|
| 130 |
f"<div style='opacity: 0.1' title='{full}'>"
|
| 131 |
f"<span>{node}:{name or ''}:</span>"
|
| 132 |
f"<strong>Looking for : [{message}]</strong> {truncated or '...'}"
|
| 133 |
f"</div>"
|
| 134 |
)
|
|
|
|
| 135 |
if (
|
| 136 |
not isinstance(msg, ToolMessage)
|
| 137 |
and not isinstance(msg, SystemMessage)
|
| 138 |
and not isinstance(msg, AIMessageChunk)
|
| 139 |
):
|
| 140 |
logger.info("msg = %s", msg)
|
| 141 |
-
# yield processing_message
|
| 142 |
if isinstance(msg, ToolMessage):
|
| 143 |
logger.debug("tool message = %s", msg)
|
| 144 |
html = (
|
| 145 |
-
f"<div class='thinking-bubble'><em>🤔{name} : {random.choice(thinking_verbs)} ...</em></div>"
|
| 146 |
f"<div style='opacity: 0.5'>"
|
| 147 |
f"<strong>Looking for : [{message}]</strong> {truncated or '...'}"
|
| 148 |
f"</div>"
|
| 149 |
)
|
| 150 |
-
yield html
|
| 151 |
-
# yield f"""
|
| 152 |
-
# <div class='thinking-bubble'>🤔 {random.choice(thinking_verbs)}...</div>
|
| 153 |
-
# <div style='opacity: 0.5'><strong>[{node} - {name}]</strong>: {escape(msg.content)}</div>"""
|
| 154 |
-
|
| 155 |
elif isinstance(msg, AIMessageChunk):
|
| 156 |
if not msg.content:
|
| 157 |
# logger.warning("*** No Message Chunk!")
|
| 158 |
-
yield
|
| 159 |
else:
|
| 160 |
streamed_response += msg.content
|
| 161 |
-
yield streamed_response
|
| 162 |
if(msg.tool_calls):
|
| 163 |
tool_calls.append(msg.tool_calls)
|
| 164 |
elif isinstance(msg, AIMessage):
|
|
@@ -176,9 +191,10 @@ async def chat_streaming(message, history, thread_id):
|
|
| 176 |
f"<strong>Telling myself:</strong> {truncated or '...'}"
|
| 177 |
f"</div>"
|
| 178 |
)
|
| 179 |
-
yield html
|
| 180 |
|
| 181 |
-
|
|
|
|
| 182 |
except Exception as e:
|
| 183 |
yield f"Error processing request {str(e)}"
|
| 184 |
|
|
@@ -236,6 +252,24 @@ chatInterface = gr.ChatInterface(
|
|
| 236 |
chatbot=chatbot,
|
| 237 |
css="""
|
| 238 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
.thinking-bubble {
|
| 240 |
opacity: 0.5;
|
| 241 |
font-style: italic;
|
|
|
|
| 107 |
return response["messages"][-1].content
|
| 108 |
|
| 109 |
|
| 110 |
+
def add_node_to_tree(node_tree : list[str], node : str) -> list[str]:
|
| 111 |
+
node_tree[-1] = node
|
| 112 |
+
node_tree.append("<span class='spinner'>⏳</span>")
|
| 113 |
+
return node_tree
|
| 114 |
+
|
| 115 |
async def chat_streaming(message, history, thread_id):
|
| 116 |
state = {"messages": (history or []) + [{"role": "user", "content": message}]}
|
| 117 |
config = {"configurable": {"thread_id": thread_id}}
|
|
|
|
| 122 |
|
| 123 |
try:
|
| 124 |
tool_calls = []
|
| 125 |
+
node_tree = ["__start__","<span class='spinner'>⏳</span>"]
|
| 126 |
async for msg, metadata in graph.astream(
|
| 127 |
state, config=config, stream_mode="messages"
|
| 128 |
):
|
| 129 |
node = metadata.get("langgraph_node", "?")
|
| 130 |
name = getattr(msg, "name", "-")
|
| 131 |
+
if(not isinstance(msg, ToolMessage)):
|
| 132 |
+
node_icon = "🧠"
|
| 133 |
+
else:
|
| 134 |
+
node_icon = "⚙️"
|
| 135 |
+
node_label = f"node:{node}"
|
| 136 |
+
tool_label =f"{name or ''}"
|
| 137 |
+
if(tool_label):
|
| 138 |
+
node_label = node_label + f":{tool_label}"
|
| 139 |
+
label = f"{node_icon} {node_label}"
|
| 140 |
+
# checking for -2 last but one. since last entry is always a spinner
|
| 141 |
+
if(node_tree[-2] != label):
|
| 142 |
+
add_node_to_tree(node_tree, label)
|
| 143 |
full: str = escape(msg.content)
|
| 144 |
truncated = (full[:MAX_CONTENT] + "…") if len(full) > MAX_CONTENT else full
|
| 145 |
|
| 146 |
+
def generate_processing_message():
|
| 147 |
+
return (
|
| 148 |
f"<div class='thinking-bubble'><em>🤔{random.choice(thinking_verbs)} ...</em></div>"
|
| 149 |
f"<div style='opacity: 0.1' title='{full}'>"
|
| 150 |
f"<span>{node}:{name or ''}:</span>"
|
| 151 |
f"<strong>Looking for : [{message}]</strong> {truncated or '...'}"
|
| 152 |
f"</div>"
|
| 153 |
)
|
| 154 |
+
|
| 155 |
if (
|
| 156 |
not isinstance(msg, ToolMessage)
|
| 157 |
and not isinstance(msg, SystemMessage)
|
| 158 |
and not isinstance(msg, AIMessageChunk)
|
| 159 |
):
|
| 160 |
logger.info("msg = %s", msg)
|
|
|
|
| 161 |
if isinstance(msg, ToolMessage):
|
| 162 |
logger.debug("tool message = %s", msg)
|
| 163 |
html = (
|
| 164 |
+
f"<div class='thinking-bubble'><em>🤔{name} tool: {random.choice(thinking_verbs)} ...</em></div>"
|
| 165 |
f"<div style='opacity: 0.5'>"
|
| 166 |
f"<strong>Looking for : [{message}]</strong> {truncated or '...'}"
|
| 167 |
f"</div>"
|
| 168 |
)
|
| 169 |
+
yield f"### { " → ".join(node_tree)}\n{html}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
elif isinstance(msg, AIMessageChunk):
|
| 171 |
if not msg.content:
|
| 172 |
# logger.warning("*** No Message Chunk!")
|
| 173 |
+
yield f"### { " → ".join(node_tree)}\n{generate_processing_message()}"
|
| 174 |
else:
|
| 175 |
streamed_response += msg.content
|
| 176 |
+
yield f"### { " → ".join(node_tree)}\n{streamed_response}"
|
| 177 |
if(msg.tool_calls):
|
| 178 |
tool_calls.append(msg.tool_calls)
|
| 179 |
elif isinstance(msg, AIMessage):
|
|
|
|
| 191 |
f"<strong>Telling myself:</strong> {truncated or '...'}"
|
| 192 |
f"</div>"
|
| 193 |
)
|
| 194 |
+
yield f"### { " → ".join(node_tree)}\n{html}"
|
| 195 |
|
| 196 |
+
node_tree[-1] = "✅"
|
| 197 |
+
yield f"### { " → ".join(node_tree)}\n{streamed_response}"
|
| 198 |
except Exception as e:
|
| 199 |
yield f"Error processing request {str(e)}"
|
| 200 |
|
|
|
|
| 252 |
chatbot=chatbot,
|
| 253 |
css="""
|
| 254 |
<style>
|
| 255 |
+
.spinner {
|
| 256 |
+
display: inline-block;
|
| 257 |
+
width: 1em;
|
| 258 |
+
height: 1em;
|
| 259 |
+
border: 2px solid #ccc;
|
| 260 |
+
border-top: 2px solid #333;
|
| 261 |
+
border-radius: 50%;
|
| 262 |
+
animation: spin 1s linear infinite;
|
| 263 |
+
vertical-align: middle;
|
| 264 |
+
margin-left: 0.5em;
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
@keyframes spin {
|
| 268 |
+
0% { transform: rotate(0deg); }
|
| 269 |
+
100% { transform: rotate(360deg); }
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
|
| 273 |
.thinking-bubble {
|
| 274 |
opacity: 0.5;
|
| 275 |
font-style: italic;
|
db.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from typing import Literal
|
| 2 |
import chromadb
|
| 3 |
-
|
| 4 |
from config import SanatanConfig
|
| 5 |
from embeddings import get_embedding
|
| 6 |
import logging
|
|
@@ -38,6 +38,60 @@ class SanatanDatabase:
|
|
| 38 |
)
|
| 39 |
return response
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def search_by_metadata(
|
| 42 |
self,
|
| 43 |
collection_name: str,
|
|
@@ -81,10 +135,11 @@ if __name__ == "__main__":
|
|
| 81 |
query = input("Search for: ")
|
| 82 |
if query.strip() == "":
|
| 83 |
break
|
| 84 |
-
response = database.
|
| 85 |
-
collection_name=collection_name,
|
| 86 |
)
|
| 87 |
-
print("
|
| 88 |
-
print(
|
| 89 |
-
print("
|
| 90 |
-
print(
|
|
|
|
|
|
| 1 |
from typing import Literal
|
| 2 |
import chromadb
|
| 3 |
+
import re, unicodedata
|
| 4 |
from config import SanatanConfig
|
| 5 |
from embeddings import get_embedding
|
| 6 |
import logging
|
|
|
|
| 38 |
)
|
| 39 |
return response
|
| 40 |
|
| 41 |
+
def search_for_literal(
|
| 42 |
+
self, collection_name: str, literal_to_search_for: str, n_results=2
|
| 43 |
+
):
|
| 44 |
+
logger.info(
|
| 45 |
+
"Searching literally for [%s] in [%s]",
|
| 46 |
+
literal_to_search_for,
|
| 47 |
+
collection_name,
|
| 48 |
+
)
|
| 49 |
+
collection = self.chroma_client.get_or_create_collection(name=collection_name)
|
| 50 |
+
|
| 51 |
+
def normalize(text):
|
| 52 |
+
return unicodedata.normalize("NFKC", text).lower()
|
| 53 |
+
|
| 54 |
+
# 1. Try native contains
|
| 55 |
+
response = collection.query(
|
| 56 |
+
query_texts=[""],
|
| 57 |
+
where_document={"$contains": literal_to_search_for},
|
| 58 |
+
n_results=n_results,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
if response["documents"] and any(response["documents"]):
|
| 62 |
+
return response
|
| 63 |
+
|
| 64 |
+
# 2. Regex fallback (normalized)
|
| 65 |
+
regex = re.compile(re.escape(normalize(literal_to_search_for)))
|
| 66 |
+
|
| 67 |
+
all_docs = collection.get()
|
| 68 |
+
matched_docs = []
|
| 69 |
+
|
| 70 |
+
for doc, metadata, ids in zip(
|
| 71 |
+
all_docs["documents"], all_docs["metadatas"], all_docs["ids"]
|
| 72 |
+
):
|
| 73 |
+
for i, d in enumerate(doc):
|
| 74 |
+
if regex.search(normalize(d)):
|
| 75 |
+
matched_docs.append(
|
| 76 |
+
{
|
| 77 |
+
"id": ids[i],
|
| 78 |
+
"document": d,
|
| 79 |
+
"metadata": (
|
| 80 |
+
metadata[i] if isinstance(metadata, list) else metadata
|
| 81 |
+
),
|
| 82 |
+
}
|
| 83 |
+
)
|
| 84 |
+
if len(matched_docs) >= n_results:
|
| 85 |
+
break
|
| 86 |
+
if len(matched_docs) >= n_results:
|
| 87 |
+
break
|
| 88 |
+
|
| 89 |
+
return {
|
| 90 |
+
"documents": [[d["document"] for d in matched_docs]],
|
| 91 |
+
"ids": [[d["id"] for d in matched_docs]],
|
| 92 |
+
"metadatas": [[d["metadata"] for d in matched_docs]],
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
def search_by_metadata(
|
| 96 |
self,
|
| 97 |
collection_name: str,
|
|
|
|
| 135 |
query = input("Search for: ")
|
| 136 |
if query.strip() == "":
|
| 137 |
break
|
| 138 |
+
response = database.search_for_literal(
|
| 139 |
+
collection_name=collection_name, literal_to_search_for=query, n_results=1
|
| 140 |
)
|
| 141 |
+
print("Matches" , response)
|
| 142 |
+
# print("Document: ")
|
| 143 |
+
# print(response["documents"][0][0])
|
| 144 |
+
# print("Metadata: ")
|
| 145 |
+
# print(response["metadatas"][0][0])
|
graph_helper.py
CHANGED
|
@@ -13,6 +13,7 @@ from tools import (
|
|
| 13 |
tool_get_standardized_azhwar_names,
|
| 14 |
tool_search_db_by_metadata,
|
| 15 |
tool_get_standardized_divya_desam_names,
|
|
|
|
| 16 |
)
|
| 17 |
from langgraph.prebuilt import ToolNode, tools_condition
|
| 18 |
from langchain_core.messages import SystemMessage, ToolMessage, HumanMessage
|
|
@@ -37,6 +38,7 @@ def generate_graph() -> CompiledStateGraph:
|
|
| 37 |
tool_get_standardized_prabandham_names,
|
| 38 |
tool_get_standardized_divya_desam_names,
|
| 39 |
tool_search_db_by_metadata,
|
|
|
|
| 40 |
]
|
| 41 |
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.2).bind_tools(tools)
|
| 42 |
|
|
|
|
| 13 |
tool_get_standardized_azhwar_names,
|
| 14 |
tool_search_db_by_metadata,
|
| 15 |
tool_get_standardized_divya_desam_names,
|
| 16 |
+
tool_search_db_for_literal
|
| 17 |
)
|
| 18 |
from langgraph.prebuilt import ToolNode, tools_condition
|
| 19 |
from langchain_core.messages import SystemMessage, ToolMessage, HumanMessage
|
|
|
|
| 38 |
tool_get_standardized_prabandham_names,
|
| 39 |
tool_get_standardized_divya_desam_names,
|
| 40 |
tool_search_db_by_metadata,
|
| 41 |
+
tool_search_db_for_literal
|
| 42 |
]
|
| 43 |
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0.2).bind_tools(tools)
|
| 44 |
|
sanatan_assistant.py
CHANGED
|
@@ -206,3 +206,36 @@ def query_by_metadata_field(
|
|
| 206 |
response["documents"], response["metadatas"], response["ids"]
|
| 207 |
)
|
| 208 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
response["documents"], response["metadatas"], response["ids"]
|
| 207 |
)
|
| 208 |
)
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
def query_by_literal_text(
|
| 212 |
+
collection_name: allowedCollections,
|
| 213 |
+
literal_to_search_for: str,
|
| 214 |
+
n_results=5,
|
| 215 |
+
):
|
| 216 |
+
"""
|
| 217 |
+
Search a scripture collection by a literal. Do NOT use this for semantic search. Only use when the user specifically asks for literal search.
|
| 218 |
+
|
| 219 |
+
Parameters:
|
| 220 |
+
- collection_name (str): The name of the scripture collection to search. ...
|
| 221 |
+
- literal_to_search_for (str): The search query.
|
| 222 |
+
- n_results (int): Number of results to return. Default is 5.
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
- A list of matching results.
|
| 226 |
+
"""
|
| 227 |
+
logger.info("Performing literal search in collection [%s] for [%s]", collection_name, literal_to_search_for)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
response = sanatanDatabase.search_for_literal(
|
| 231 |
+
collection_name=collection_name,
|
| 232 |
+
literal_to_search_for=literal_to_search_for,
|
| 233 |
+
n_results=n_results,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
return "\n\n".join(
|
| 237 |
+
f"Document: {doc}\nMetadata: {meta}\nID: {id_}"
|
| 238 |
+
for doc, meta, id_ in zip(
|
| 239 |
+
response["documents"], response["metadatas"], response["ids"]
|
| 240 |
+
)
|
| 241 |
+
)
|
tools.py
CHANGED
|
@@ -6,7 +6,7 @@ from config import SanatanConfig
|
|
| 6 |
from nalayiram_helper import get_standardized_azhwar_names, get_standardized_divya_desam_names
|
| 7 |
from push_notifications_helper import push
|
| 8 |
from serperdev_helper import search as search_web
|
| 9 |
-
from sanatan_assistant import format_scripture_answer, query, query_by_metadata_field
|
| 10 |
|
| 11 |
tool_push = Tool(
|
| 12 |
name="push", description="Send a push notification to the user", func=push
|
|
@@ -17,7 +17,16 @@ allowed_collections = [s["collection_name"] for s in SanatanConfig.scriptures]
|
|
| 17 |
tool_search_db = StructuredTool.from_function(
|
| 18 |
query,
|
| 19 |
description=(
|
| 20 |
-
"Do a vector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
f"The collection_name must be one of: {', '.join(allowed_collections)}."
|
| 22 |
"Use this to find relevant scripture verses or explanations based on the given query."
|
| 23 |
# "If the query doesn't yield any relevant results, then call `tool_search_db_by_metadata` tool to search specifically by a given metadata field (only if specific field from metadata has been mentioned)."
|
|
|
|
| 6 |
from nalayiram_helper import get_standardized_azhwar_names, get_standardized_divya_desam_names
|
| 7 |
from push_notifications_helper import push
|
| 8 |
from serperdev_helper import search as search_web
|
| 9 |
+
from sanatan_assistant import format_scripture_answer, query, query_by_metadata_field, query_by_literal_text
|
| 10 |
|
| 11 |
tool_push = Tool(
|
| 12 |
name="push", description="Send a push notification to the user", func=push
|
|
|
|
| 17 |
tool_search_db = StructuredTool.from_function(
|
| 18 |
query,
|
| 19 |
description=(
|
| 20 |
+
"Do a semantic vector search within a specific scripture collection. "
|
| 21 |
+
f"The collection_name must be one of: {', '.join(allowed_collections)}."
|
| 22 |
+
"Use this to narrow down relevant scripture verses or explanations based on the given query."
|
| 23 |
+
),
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
tool_search_db_for_literal = StructuredTool.from_function(
|
| 27 |
+
query_by_literal_text,
|
| 28 |
+
description=(
|
| 29 |
+
"Do a literal search within a specific scripture collection (only if user specifically asks for a literal search or if semantic search does not yield relevant results)."
|
| 30 |
f"The collection_name must be one of: {', '.join(allowed_collections)}."
|
| 31 |
"Use this to find relevant scripture verses or explanations based on the given query."
|
| 32 |
# "If the query doesn't yield any relevant results, then call `tool_search_db_by_metadata` tool to search specifically by a given metadata field (only if specific field from metadata has been mentioned)."
|