Spaces:
Runtime error
Runtime error
Update models/model.py
Browse files- models/model.py +90 -141
models/model.py
CHANGED
|
@@ -1,9 +1,17 @@
|
|
| 1 |
-
|
| 2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import math
|
| 4 |
-
from typing import Optional, Tuple
|
| 5 |
|
| 6 |
-
from .components import RMSNorm
|
| 7 |
from flash_attn import flash_attn_varlen_func
|
| 8 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 9 |
import torch
|
|
@@ -11,7 +19,7 @@ import torch.distributed as dist
|
|
| 11 |
import torch.nn as nn
|
| 12 |
import torch.nn.functional as F
|
| 13 |
|
| 14 |
-
|
| 15 |
|
| 16 |
|
| 17 |
def modulate(x, scale):
|
|
@@ -57,17 +65,13 @@ class ParallelTimestepEmbedder(nn.Module):
|
|
| 57 |
"""
|
| 58 |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 59 |
half = dim // 2
|
| 60 |
-
freqs = torch.exp(
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
/ half
|
| 64 |
-
).to(device=t.device)
|
| 65 |
args = t[:, None].float() * freqs[None]
|
| 66 |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 67 |
if dim % 2:
|
| 68 |
-
embedding = torch.cat(
|
| 69 |
-
[embedding, torch.zeros_like(embedding[:, :1])], dim=-1
|
| 70 |
-
)
|
| 71 |
return embedding
|
| 72 |
|
| 73 |
def forward(self, t):
|
|
@@ -85,8 +89,7 @@ class ParallelLabelEmbedder(nn.Module):
|
|
| 85 |
super().__init__()
|
| 86 |
use_cfg_embedding = int(dropout_prob > 0)
|
| 87 |
self.embedding_table = nn.Embedding(
|
| 88 |
-
num_classes + use_cfg_embedding
|
| 89 |
-
hidden_size,
|
| 90 |
)
|
| 91 |
self.num_classes = num_classes
|
| 92 |
self.dropout_prob = dropout_prob
|
|
@@ -96,9 +99,7 @@ class ParallelLabelEmbedder(nn.Module):
|
|
| 96 |
Drops labels to enable classifier-free guidance.
|
| 97 |
"""
|
| 98 |
if force_drop_ids is None:
|
| 99 |
-
drop_ids = (
|
| 100 |
-
torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
| 101 |
-
)
|
| 102 |
drop_ids = drop_ids.cuda()
|
| 103 |
drop_ids = drop_ids.to(labels.device)
|
| 104 |
else:
|
|
@@ -141,10 +142,9 @@ class Attention(nn.Module):
|
|
| 141 |
"""
|
| 142 |
super().__init__()
|
| 143 |
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
|
| 144 |
-
|
| 145 |
-
self.
|
| 146 |
-
self.
|
| 147 |
-
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
| 148 |
self.head_dim = dim // n_heads
|
| 149 |
|
| 150 |
self.wq = nn.Linear(
|
|
@@ -173,7 +173,7 @@ class Attention(nn.Module):
|
|
| 173 |
self.n_kv_heads * self.head_dim,
|
| 174 |
bias=False,
|
| 175 |
)
|
| 176 |
-
self.gate = nn.Parameter(torch.zeros([self.
|
| 177 |
|
| 178 |
self.wo = nn.Linear(
|
| 179 |
n_heads * self.head_dim,
|
|
@@ -182,10 +182,10 @@ class Attention(nn.Module):
|
|
| 182 |
)
|
| 183 |
|
| 184 |
if qk_norm:
|
| 185 |
-
self.q_norm = nn.LayerNorm(self.
|
| 186 |
-
self.k_norm = nn.LayerNorm(self.
|
| 187 |
if y_dim > 0:
|
| 188 |
-
self.ky_norm = nn.LayerNorm(self.
|
| 189 |
else:
|
| 190 |
self.ky_norm = nn.Identity()
|
| 191 |
else:
|
|
@@ -255,17 +255,12 @@ class Attention(nn.Module):
|
|
| 255 |
return x_out.type_as(x_in)
|
| 256 |
|
| 257 |
# copied from huggingface modeling_llama.py
|
| 258 |
-
def _upad_input(
|
| 259 |
-
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
| 260 |
-
):
|
| 261 |
-
|
| 262 |
def _get_unpad_data(attention_mask):
|
| 263 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 264 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 265 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 266 |
-
cu_seqlens = F.pad(
|
| 267 |
-
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)
|
| 268 |
-
)
|
| 269 |
return (
|
| 270 |
indices,
|
| 271 |
cu_seqlens,
|
|
@@ -285,9 +280,7 @@ class Attention(nn.Module):
|
|
| 285 |
)
|
| 286 |
if query_length == kv_seq_len:
|
| 287 |
query_layer = index_first_axis(
|
| 288 |
-
query_layer.reshape(
|
| 289 |
-
batch_size * kv_seq_len, self.n_local_heads, head_dim
|
| 290 |
-
),
|
| 291 |
indices_k,
|
| 292 |
)
|
| 293 |
cu_seqlens_q = cu_seqlens_k
|
|
@@ -303,9 +296,7 @@ class Attention(nn.Module):
|
|
| 303 |
else:
|
| 304 |
# The -q_len: slice assumes left padding.
|
| 305 |
attention_mask = attention_mask[:, -query_length:]
|
| 306 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
| 307 |
-
query_layer, attention_mask
|
| 308 |
-
)
|
| 309 |
|
| 310 |
return (
|
| 311 |
query_layer,
|
|
@@ -343,15 +334,20 @@ class Attention(nn.Module):
|
|
| 343 |
xq = self.q_norm(xq)
|
| 344 |
xk = self.k_norm(xk)
|
| 345 |
|
| 346 |
-
xq = xq.view(bsz, seqlen, self.
|
| 347 |
-
xk = xk.view(bsz, seqlen, self.
|
| 348 |
-
xv = xv.view(bsz, seqlen, self.
|
| 349 |
|
| 350 |
xq = Attention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
|
| 351 |
xk = Attention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
|
| 352 |
|
| 353 |
xq, xk = xq.to(dtype), xk.to(dtype)
|
| 354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
if dtype in [torch.float16, torch.bfloat16]:
|
| 356 |
# begin var_len flash attn
|
| 357 |
(
|
|
@@ -366,13 +362,6 @@ class Attention(nn.Module):
|
|
| 366 |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 367 |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 368 |
|
| 369 |
-
if self.proportional_attn:
|
| 370 |
-
softmax_scale = math.sqrt(
|
| 371 |
-
math.log(seqlen, self.base_seqlen) / self.head_dim
|
| 372 |
-
)
|
| 373 |
-
else:
|
| 374 |
-
softmax_scale = math.sqrt(1 / self.head_dim)
|
| 375 |
-
|
| 376 |
attn_output_unpad = flash_attn_varlen_func(
|
| 377 |
query_states,
|
| 378 |
key_states,
|
|
@@ -394,21 +383,17 @@ class Attention(nn.Module):
|
|
| 394 |
xq.permute(0, 2, 1, 3),
|
| 395 |
xk.permute(0, 2, 1, 3),
|
| 396 |
xv.permute(0, 2, 1, 3),
|
| 397 |
-
attn_mask=x_mask.bool()
|
| 398 |
-
|
| 399 |
-
.expand(-1, self.n_local_heads, seqlen, -1),
|
| 400 |
)
|
| 401 |
.permute(0, 2, 1, 3)
|
| 402 |
.to(dtype)
|
| 403 |
)
|
| 404 |
|
| 405 |
if hasattr(self, "wk_y"):
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
)
|
| 410 |
-
yv = self.wv_y(y).view(bsz, -1, self.n_local_kv_heads, self.head_dim)
|
| 411 |
-
n_rep = self.n_local_heads // self.n_local_kv_heads
|
| 412 |
if n_rep >= 1:
|
| 413 |
yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
| 414 |
yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
|
@@ -416,7 +401,7 @@ class Attention(nn.Module):
|
|
| 416 |
xq.permute(0, 2, 1, 3),
|
| 417 |
yk.permute(0, 2, 1, 3),
|
| 418 |
yv.permute(0, 2, 1, 3),
|
| 419 |
-
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.
|
| 420 |
).permute(0, 2, 1, 3)
|
| 421 |
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
|
| 422 |
output = output + output_y
|
|
@@ -534,9 +519,9 @@ class TransformerBlock(nn.Module):
|
|
| 534 |
)
|
| 535 |
self.layer_id = layer_id
|
| 536 |
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
| 537 |
-
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
| 538 |
-
|
| 539 |
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
|
|
|
|
|
|
| 540 |
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
| 541 |
|
| 542 |
self.adaLN_modulation = nn.Sequential(
|
|
@@ -583,33 +568,28 @@ class TransformerBlock(nn.Module):
|
|
| 583 |
y_mask,
|
| 584 |
)
|
| 585 |
)
|
| 586 |
-
d = x.shape[-1]
|
| 587 |
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
|
| 588 |
self.feed_forward(
|
| 589 |
-
modulate(self.ffn_norm1(x), scale_mlp)
|
| 590 |
-
)
|
| 591 |
)
|
| 592 |
|
| 593 |
else:
|
| 594 |
-
x = x + self.
|
| 595 |
self.attention(
|
| 596 |
-
self.
|
| 597 |
x_mask,
|
| 598 |
freqs_cis,
|
| 599 |
self.attention_y_norm(y),
|
| 600 |
y_mask,
|
| 601 |
)
|
| 602 |
)
|
| 603 |
-
|
| 604 |
-
B, L, D = x.shape
|
| 605 |
-
x = x.view(B * L, D)
|
| 606 |
-
x = x + self.ffn_norm1(self.feed_forward(self.ffn_norm(x)))
|
| 607 |
-
x = x.view(B, L, D)
|
| 608 |
|
| 609 |
return x
|
| 610 |
|
| 611 |
|
| 612 |
-
class
|
| 613 |
"""
|
| 614 |
The final layer of NextDiT.
|
| 615 |
"""
|
|
@@ -624,19 +604,18 @@ class ParallelFinalLayer(nn.Module):
|
|
| 624 |
self.linear = nn.Linear(
|
| 625 |
hidden_size,
|
| 626 |
patch_size * patch_size * out_channels,
|
| 627 |
-
bias=True,
|
| 628 |
)
|
| 629 |
self.adaLN_modulation = nn.Sequential(
|
| 630 |
nn.SiLU(),
|
| 631 |
nn.Linear(
|
| 632 |
min(hidden_size, 1024),
|
| 633 |
hidden_size,
|
| 634 |
-
bias=True,
|
| 635 |
),
|
| 636 |
)
|
| 637 |
|
| 638 |
def forward(self, x, c):
|
| 639 |
scale = self.adaLN_modulation(c)
|
|
|
|
| 640 |
x = modulate(self.norm_final(x), scale)
|
| 641 |
x = self.linear(x)
|
| 642 |
return x
|
|
@@ -661,7 +640,6 @@ class NextDiT(nn.Module):
|
|
| 661 |
learn_sigma: bool = True,
|
| 662 |
qk_norm: bool = False,
|
| 663 |
cap_feat_dim: int = 5120,
|
| 664 |
-
rope_scaling_factor: float = 1.0,
|
| 665 |
scale_factor: float = 1.0,
|
| 666 |
) -> None:
|
| 667 |
super().__init__()
|
|
@@ -703,27 +681,21 @@ class NextDiT(nn.Module):
|
|
| 703 |
for layer_id in range(n_layers)
|
| 704 |
]
|
| 705 |
)
|
| 706 |
-
self.final_layer =
|
| 707 |
|
| 708 |
assert (dim // n_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
|
| 709 |
-
self.dim = dim
|
| 710 |
-
self.n_heads = n_heads
|
| 711 |
self.freqs_cis = NextDiT.precompute_freqs_cis(
|
| 712 |
dim // n_heads,
|
| 713 |
384,
|
| 714 |
-
rope_scaling_factor=rope_scaling_factor,
|
| 715 |
scale_factor=scale_factor,
|
| 716 |
)
|
| 717 |
-
self.
|
|
|
|
| 718 |
self.scale_factor = scale_factor
|
| 719 |
-
# self.eol_token = nn.Parameter(torch.empty(dim))
|
| 720 |
self.pad_token = nn.Parameter(torch.empty(dim))
|
| 721 |
-
# nn.init.normal_(self.eol_token, std=0.02)
|
| 722 |
nn.init.normal_(self.pad_token, std=0.02)
|
| 723 |
|
| 724 |
-
def unpatchify(
|
| 725 |
-
self, x: torch.Tensor, img_size: List[Tuple[int, int]], return_tensor=False
|
| 726 |
-
) -> List[torch.Tensor]:
|
| 727 |
"""
|
| 728 |
x: (N, T, patch_size**2 * C)
|
| 729 |
imgs: (N, H, W, C)
|
|
@@ -757,18 +729,12 @@ class NextDiT(nn.Module):
|
|
| 757 |
if isinstance(x, torch.Tensor):
|
| 758 |
pH = pW = self.patch_size
|
| 759 |
B, C, H, W = x.size()
|
| 760 |
-
x = (
|
| 761 |
-
x.view(B, C, H // pH, pH, W // pW, pW)
|
| 762 |
-
.permute(0, 2, 4, 1, 3, 5)
|
| 763 |
-
.flatten(3)
|
| 764 |
-
)
|
| 765 |
x = self.x_embedder(x)
|
| 766 |
x = x.flatten(1, 2)
|
| 767 |
|
| 768 |
-
mask = torch.ones(
|
| 769 |
-
|
| 770 |
-
)
|
| 771 |
-
# leave the first line for text
|
| 772 |
return (
|
| 773 |
x,
|
| 774 |
mask,
|
|
@@ -787,20 +753,14 @@ class NextDiT(nn.Module):
|
|
| 787 |
item_freqs_cis = self.freqs_cis[: H // pH, : W // pW]
|
| 788 |
freqs_cis.append(item_freqs_cis.flatten(0, 1))
|
| 789 |
img_size.append((H, W))
|
| 790 |
-
img = (
|
| 791 |
-
img.view(C, H // pH, pH, W // pW, pW)
|
| 792 |
-
.permute(1, 3, 0, 2, 4)
|
| 793 |
-
.flatten(2)
|
| 794 |
-
)
|
| 795 |
img = self.x_embedder(img)
|
| 796 |
img = img.flatten(0, 1)
|
| 797 |
l_effective_seq_len.append(len(img))
|
| 798 |
x_embed.append(img)
|
| 799 |
|
| 800 |
max_seq_len = max(l_effective_seq_len)
|
| 801 |
-
mask = torch.zeros(
|
| 802 |
-
len(x), max_seq_len, dtype=torch.int32, device=x[0].device
|
| 803 |
-
)
|
| 804 |
padded_x_embed = []
|
| 805 |
padded_freqs_cis = []
|
| 806 |
for i, (item_embed, item_freqs_cis, item_seq_len) in enumerate(
|
|
@@ -809,9 +769,7 @@ class NextDiT(nn.Module):
|
|
| 809 |
item_embed = torch.cat(
|
| 810 |
[
|
| 811 |
item_embed,
|
| 812 |
-
self.pad_token.view(1, -1).expand(
|
| 813 |
-
max_seq_len - item_seq_len, -1
|
| 814 |
-
),
|
| 815 |
],
|
| 816 |
dim=0,
|
| 817 |
)
|
|
@@ -840,13 +798,9 @@ class NextDiT(nn.Module):
|
|
| 840 |
x, mask, img_size, freqs_cis = self.patchify_and_embed(x)
|
| 841 |
freqs_cis = freqs_cis.to(x.device)
|
| 842 |
|
| 843 |
-
# cap_freqs_cis = self.freqs_cis[:1, :cap_feats.shape[1]].to(x.device)
|
| 844 |
-
|
| 845 |
t = self.t_embedder(t) # (N, D)
|
| 846 |
cap_mask_float = cap_mask.float().unsqueeze(-1)
|
| 847 |
-
cap_feats_pool = (cap_feats * cap_mask_float).sum(dim=1) / cap_mask_float.sum(
|
| 848 |
-
dim=1
|
| 849 |
-
)
|
| 850 |
cap_feats_pool = cap_feats_pool.to(cap_feats)
|
| 851 |
cap_emb = self.cap_embedder(cap_feats_pool)
|
| 852 |
adaln_input = t + cap_emb
|
|
@@ -871,25 +825,23 @@ class NextDiT(nn.Module):
|
|
| 871 |
cap_feats,
|
| 872 |
cap_mask,
|
| 873 |
cfg_scale,
|
| 874 |
-
|
| 875 |
-
|
| 876 |
base_seqlen: Optional[int] = None,
|
| 877 |
proportional_attn: bool = False,
|
| 878 |
):
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
|
| 882 |
-
|
| 883 |
# # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
timestep=t[0],
|
| 892 |
-
)
|
| 893 |
|
| 894 |
if proportional_attn:
|
| 895 |
assert base_seqlen is not None
|
|
@@ -903,7 +855,7 @@ class NextDiT(nn.Module):
|
|
| 903 |
|
| 904 |
half = x[: len(x) // 2]
|
| 905 |
combined = torch.cat([half, half], dim=0)
|
| 906 |
-
model_out = self
|
| 907 |
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
| 908 |
# three channels by default. The standard approach to cfg applies it to all channels.
|
| 909 |
# This can be done by uncommenting the following line and commenting-out the line following that.
|
|
@@ -912,6 +864,7 @@ class NextDiT(nn.Module):
|
|
| 912 |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
| 913 |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
| 914 |
eps = torch.cat([half_eps, half_eps], dim=0)
|
|
|
|
| 915 |
return torch.cat([eps, rest], dim=1)
|
| 916 |
|
| 917 |
@staticmethod
|
|
@@ -919,8 +872,8 @@ class NextDiT(nn.Module):
|
|
| 919 |
dim: int,
|
| 920 |
end: int,
|
| 921 |
theta: float = 10000.0,
|
| 922 |
-
rope_scaling_factor: float = 1.0,
|
| 923 |
scale_factor: float = 1.0,
|
|
|
|
| 924 |
timestep: float = 1.0,
|
| 925 |
):
|
| 926 |
"""
|
|
@@ -942,15 +895,16 @@ class NextDiT(nn.Module):
|
|
| 942 |
torch.Tensor: Precomputed frequency tensor with complex
|
| 943 |
exponentials.
|
| 944 |
"""
|
| 945 |
-
freqs_inter = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float().cuda() / dim)) / scale_factor
|
| 946 |
-
|
| 947 |
-
target_dim = timestep * dim + 1
|
| 948 |
-
scale_factor = scale_factor ** (dim / target_dim)
|
| 949 |
-
theta = theta * scale_factor
|
| 950 |
|
| 951 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 952 |
|
| 953 |
-
|
|
|
|
| 954 |
|
| 955 |
timestep = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore
|
| 956 |
|
|
@@ -960,20 +914,14 @@ class NextDiT(nn.Module):
|
|
| 960 |
freqs_cis_h = freqs_cis.view(end, 1, dim // 4, 1).repeat(1, end, 1, 1)
|
| 961 |
freqs_cis_w = freqs_cis.view(1, end, dim // 4, 1).repeat(end, 1, 1, 1)
|
| 962 |
freqs_cis = torch.cat([freqs_cis_h, freqs_cis_w], dim=-1).flatten(2)
|
| 963 |
-
|
| 964 |
return freqs_cis
|
| 965 |
|
| 966 |
def parameter_count(self) -> int:
|
| 967 |
-
tensor_parallel_module_list = (
|
| 968 |
-
nn.Linear,
|
| 969 |
-
nn.Linear,
|
| 970 |
-
nn.Embedding,
|
| 971 |
-
)
|
| 972 |
total_params = 0
|
| 973 |
|
| 974 |
def _recursive_count_params(module):
|
| 975 |
nonlocal total_params
|
| 976 |
-
is_tp_module = isinstance(module, tensor_parallel_module_list)
|
| 977 |
for param in module.parameters(recurse=False):
|
| 978 |
total_params += param.numel()
|
| 979 |
for submodule in module.children():
|
|
@@ -992,5 +940,6 @@ class NextDiT(nn.Module):
|
|
| 992 |
def NextDiT_2B_patch2(**kwargs):
|
| 993 |
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, **kwargs)
|
| 994 |
|
|
|
|
| 995 |
def NextDiT_2B_GQA_patch2(**kwargs):
|
| 996 |
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, n_kv_heads=8, **kwargs)
|
|
|
|
| 1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
| 2 |
+
# All rights reserved.
|
| 3 |
+
|
| 4 |
+
# This source code is licensed under the license found in the
|
| 5 |
+
# LICENSE file in the root directory of this source tree.
|
| 6 |
+
# --------------------------------------------------------
|
| 7 |
+
# References:
|
| 8 |
+
# GLIDE: https://github.com/openai/glide-text2im
|
| 9 |
+
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
|
| 10 |
+
# --------------------------------------------------------
|
| 11 |
+
|
| 12 |
import math
|
| 13 |
+
from typing import List, Optional, Tuple
|
| 14 |
|
|
|
|
| 15 |
from flash_attn import flash_attn_varlen_func
|
| 16 |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
| 17 |
import torch
|
|
|
|
| 19 |
import torch.nn as nn
|
| 20 |
import torch.nn.functional as F
|
| 21 |
|
| 22 |
+
from .components import RMSNorm
|
| 23 |
|
| 24 |
|
| 25 |
def modulate(x, scale):
|
|
|
|
| 65 |
"""
|
| 66 |
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 67 |
half = dim // 2
|
| 68 |
+
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
| 69 |
+
device=t.device
|
| 70 |
+
)
|
|
|
|
|
|
|
| 71 |
args = t[:, None].float() * freqs[None]
|
| 72 |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 73 |
if dim % 2:
|
| 74 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
|
|
|
|
|
| 75 |
return embedding
|
| 76 |
|
| 77 |
def forward(self, t):
|
|
|
|
| 89 |
super().__init__()
|
| 90 |
use_cfg_embedding = int(dropout_prob > 0)
|
| 91 |
self.embedding_table = nn.Embedding(
|
| 92 |
+
num_classes + use_cfg_embedding
|
|
|
|
| 93 |
)
|
| 94 |
self.num_classes = num_classes
|
| 95 |
self.dropout_prob = dropout_prob
|
|
|
|
| 99 |
Drops labels to enable classifier-free guidance.
|
| 100 |
"""
|
| 101 |
if force_drop_ids is None:
|
| 102 |
+
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
|
|
|
|
|
|
|
| 103 |
drop_ids = drop_ids.cuda()
|
| 104 |
drop_ids = drop_ids.to(labels.device)
|
| 105 |
else:
|
|
|
|
| 142 |
"""
|
| 143 |
super().__init__()
|
| 144 |
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
|
| 145 |
+
self.n_heads = n_heads
|
| 146 |
+
self.n_kv_heads = self.n_kv_heads
|
| 147 |
+
self.n_rep = self.n_heads // self.n_kv_heads
|
|
|
|
| 148 |
self.head_dim = dim // n_heads
|
| 149 |
|
| 150 |
self.wq = nn.Linear(
|
|
|
|
| 173 |
self.n_kv_heads * self.head_dim,
|
| 174 |
bias=False,
|
| 175 |
)
|
| 176 |
+
self.gate = nn.Parameter(torch.zeros([self.n_heads]))
|
| 177 |
|
| 178 |
self.wo = nn.Linear(
|
| 179 |
n_heads * self.head_dim,
|
|
|
|
| 182 |
)
|
| 183 |
|
| 184 |
if qk_norm:
|
| 185 |
+
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
|
| 186 |
+
self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
|
| 187 |
if y_dim > 0:
|
| 188 |
+
self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
|
| 189 |
else:
|
| 190 |
self.ky_norm = nn.Identity()
|
| 191 |
else:
|
|
|
|
| 255 |
return x_out.type_as(x_in)
|
| 256 |
|
| 257 |
# copied from huggingface modeling_llama.py
|
| 258 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
|
|
|
|
|
|
|
|
|
| 259 |
def _get_unpad_data(attention_mask):
|
| 260 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 261 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 262 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 263 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
|
|
|
|
|
|
| 264 |
return (
|
| 265 |
indices,
|
| 266 |
cu_seqlens,
|
|
|
|
| 280 |
)
|
| 281 |
if query_length == kv_seq_len:
|
| 282 |
query_layer = index_first_axis(
|
| 283 |
+
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim),
|
|
|
|
|
|
|
| 284 |
indices_k,
|
| 285 |
)
|
| 286 |
cu_seqlens_q = cu_seqlens_k
|
|
|
|
| 296 |
else:
|
| 297 |
# The -q_len: slice assumes left padding.
|
| 298 |
attention_mask = attention_mask[:, -query_length:]
|
| 299 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
|
|
|
|
|
|
| 300 |
|
| 301 |
return (
|
| 302 |
query_layer,
|
|
|
|
| 334 |
xq = self.q_norm(xq)
|
| 335 |
xk = self.k_norm(xk)
|
| 336 |
|
| 337 |
+
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
|
| 338 |
+
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
|
| 339 |
+
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
|
| 340 |
|
| 341 |
xq = Attention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
|
| 342 |
xk = Attention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
|
| 343 |
|
| 344 |
xq, xk = xq.to(dtype), xk.to(dtype)
|
| 345 |
|
| 346 |
+
if self.proportional_attn:
|
| 347 |
+
softmax_scale = math.sqrt(math.log(seqlen, self.base_seqlen) / self.head_dim)
|
| 348 |
+
else:
|
| 349 |
+
softmax_scale = math.sqrt(1 / self.head_dim)
|
| 350 |
+
|
| 351 |
if dtype in [torch.float16, torch.bfloat16]:
|
| 352 |
# begin var_len flash attn
|
| 353 |
(
|
|
|
|
| 362 |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 363 |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
attn_output_unpad = flash_attn_varlen_func(
|
| 366 |
query_states,
|
| 367 |
key_states,
|
|
|
|
| 383 |
xq.permute(0, 2, 1, 3),
|
| 384 |
xk.permute(0, 2, 1, 3),
|
| 385 |
xv.permute(0, 2, 1, 3),
|
| 386 |
+
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
|
| 387 |
+
scale=softmax_scale,
|
|
|
|
| 388 |
)
|
| 389 |
.permute(0, 2, 1, 3)
|
| 390 |
.to(dtype)
|
| 391 |
)
|
| 392 |
|
| 393 |
if hasattr(self, "wk_y"):
|
| 394 |
+
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
|
| 395 |
+
yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
|
| 396 |
+
n_rep = self.n_heads // self.n_kv_heads
|
|
|
|
|
|
|
|
|
|
| 397 |
if n_rep >= 1:
|
| 398 |
yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
| 399 |
yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
|
|
|
| 401 |
xq.permute(0, 2, 1, 3),
|
| 402 |
yk.permute(0, 2, 1, 3),
|
| 403 |
yv.permute(0, 2, 1, 3),
|
| 404 |
+
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1),
|
| 405 |
).permute(0, 2, 1, 3)
|
| 406 |
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
|
| 407 |
output = output + output_y
|
|
|
|
| 519 |
)
|
| 520 |
self.layer_id = layer_id
|
| 521 |
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
|
|
|
|
|
|
| 522 |
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
| 523 |
+
|
| 524 |
+
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
| 525 |
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
| 526 |
|
| 527 |
self.adaLN_modulation = nn.Sequential(
|
|
|
|
| 568 |
y_mask,
|
| 569 |
)
|
| 570 |
)
|
|
|
|
| 571 |
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
|
| 572 |
self.feed_forward(
|
| 573 |
+
modulate(self.ffn_norm1(x), scale_mlp),
|
| 574 |
+
)
|
| 575 |
)
|
| 576 |
|
| 577 |
else:
|
| 578 |
+
x = x + self.attention_norm2(
|
| 579 |
self.attention(
|
| 580 |
+
self.attention_norm1(x),
|
| 581 |
x_mask,
|
| 582 |
freqs_cis,
|
| 583 |
self.attention_y_norm(y),
|
| 584 |
y_mask,
|
| 585 |
)
|
| 586 |
)
|
| 587 |
+
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 588 |
|
| 589 |
return x
|
| 590 |
|
| 591 |
|
| 592 |
+
class FinalLayer(nn.Module):
|
| 593 |
"""
|
| 594 |
The final layer of NextDiT.
|
| 595 |
"""
|
|
|
|
| 604 |
self.linear = nn.Linear(
|
| 605 |
hidden_size,
|
| 606 |
patch_size * patch_size * out_channels,
|
|
|
|
| 607 |
)
|
| 608 |
self.adaLN_modulation = nn.Sequential(
|
| 609 |
nn.SiLU(),
|
| 610 |
nn.Linear(
|
| 611 |
min(hidden_size, 1024),
|
| 612 |
hidden_size,
|
|
|
|
| 613 |
),
|
| 614 |
)
|
| 615 |
|
| 616 |
def forward(self, x, c):
|
| 617 |
scale = self.adaLN_modulation(c)
|
| 618 |
+
|
| 619 |
x = modulate(self.norm_final(x), scale)
|
| 620 |
x = self.linear(x)
|
| 621 |
return x
|
|
|
|
| 640 |
learn_sigma: bool = True,
|
| 641 |
qk_norm: bool = False,
|
| 642 |
cap_feat_dim: int = 5120,
|
|
|
|
| 643 |
scale_factor: float = 1.0,
|
| 644 |
) -> None:
|
| 645 |
super().__init__()
|
|
|
|
| 681 |
for layer_id in range(n_layers)
|
| 682 |
]
|
| 683 |
)
|
| 684 |
+
self.final_layer = FinalLayer(dim, patch_size, self.out_channels)
|
| 685 |
|
| 686 |
assert (dim // n_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4"
|
|
|
|
|
|
|
| 687 |
self.freqs_cis = NextDiT.precompute_freqs_cis(
|
| 688 |
dim // n_heads,
|
| 689 |
384,
|
|
|
|
| 690 |
scale_factor=scale_factor,
|
| 691 |
)
|
| 692 |
+
self.dim = dim
|
| 693 |
+
self.n_heads = n_heads
|
| 694 |
self.scale_factor = scale_factor
|
|
|
|
| 695 |
self.pad_token = nn.Parameter(torch.empty(dim))
|
|
|
|
| 696 |
nn.init.normal_(self.pad_token, std=0.02)
|
| 697 |
|
| 698 |
+
def unpatchify(self, x: torch.Tensor, img_size: List[Tuple[int, int]], return_tensor=False) -> List[torch.Tensor]:
|
|
|
|
|
|
|
| 699 |
"""
|
| 700 |
x: (N, T, patch_size**2 * C)
|
| 701 |
imgs: (N, H, W, C)
|
|
|
|
| 729 |
if isinstance(x, torch.Tensor):
|
| 730 |
pH = pW = self.patch_size
|
| 731 |
B, C, H, W = x.size()
|
| 732 |
+
x = x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 1, 3, 5).flatten(3)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 733 |
x = self.x_embedder(x)
|
| 734 |
x = x.flatten(1, 2)
|
| 735 |
|
| 736 |
+
mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)
|
| 737 |
+
|
|
|
|
|
|
|
| 738 |
return (
|
| 739 |
x,
|
| 740 |
mask,
|
|
|
|
| 753 |
item_freqs_cis = self.freqs_cis[: H // pH, : W // pW]
|
| 754 |
freqs_cis.append(item_freqs_cis.flatten(0, 1))
|
| 755 |
img_size.append((H, W))
|
| 756 |
+
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 0, 2, 4).flatten(2)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
img = self.x_embedder(img)
|
| 758 |
img = img.flatten(0, 1)
|
| 759 |
l_effective_seq_len.append(len(img))
|
| 760 |
x_embed.append(img)
|
| 761 |
|
| 762 |
max_seq_len = max(l_effective_seq_len)
|
| 763 |
+
mask = torch.zeros(len(x), max_seq_len, dtype=torch.int32, device=x[0].device)
|
|
|
|
|
|
|
| 764 |
padded_x_embed = []
|
| 765 |
padded_freqs_cis = []
|
| 766 |
for i, (item_embed, item_freqs_cis, item_seq_len) in enumerate(
|
|
|
|
| 769 |
item_embed = torch.cat(
|
| 770 |
[
|
| 771 |
item_embed,
|
| 772 |
+
self.pad_token.view(1, -1).expand(max_seq_len - item_seq_len, -1),
|
|
|
|
|
|
|
| 773 |
],
|
| 774 |
dim=0,
|
| 775 |
)
|
|
|
|
| 798 |
x, mask, img_size, freqs_cis = self.patchify_and_embed(x)
|
| 799 |
freqs_cis = freqs_cis.to(x.device)
|
| 800 |
|
|
|
|
|
|
|
| 801 |
t = self.t_embedder(t) # (N, D)
|
| 802 |
cap_mask_float = cap_mask.float().unsqueeze(-1)
|
| 803 |
+
cap_feats_pool = (cap_feats * cap_mask_float).sum(dim=1) / cap_mask_float.sum(dim=1)
|
|
|
|
|
|
|
| 804 |
cap_feats_pool = cap_feats_pool.to(cap_feats)
|
| 805 |
cap_emb = self.cap_embedder(cap_feats_pool)
|
| 806 |
adaln_input = t + cap_emb
|
|
|
|
| 825 |
cap_feats,
|
| 826 |
cap_mask,
|
| 827 |
cfg_scale,
|
| 828 |
+
scale_factor=1.0,
|
| 829 |
+
scale_watershed=1.0,
|
| 830 |
base_seqlen: Optional[int] = None,
|
| 831 |
proportional_attn: bool = False,
|
| 832 |
):
|
| 833 |
+
"""
|
| 834 |
+
Forward pass of NextDiT, but also batches the unconditional forward pass
|
| 835 |
+
for classifier-free guidance.
|
| 836 |
+
"""
|
| 837 |
# # https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
|
| 838 |
+
self.freqs_cis = NextDiT.precompute_freqs_cis(
|
| 839 |
+
self.dim // self.n_heads,
|
| 840 |
+
384,
|
| 841 |
+
scale_factor=scale_factor,
|
| 842 |
+
scale_watershed=scale_watershed,
|
| 843 |
+
timestep=t[0].item(),
|
| 844 |
+
)
|
|
|
|
|
|
|
| 845 |
|
| 846 |
if proportional_attn:
|
| 847 |
assert base_seqlen is not None
|
|
|
|
| 855 |
|
| 856 |
half = x[: len(x) // 2]
|
| 857 |
combined = torch.cat([half, half], dim=0)
|
| 858 |
+
model_out = self(combined, t, cap_feats, cap_mask)
|
| 859 |
# For exact reproducibility reasons, we apply classifier-free guidance on only
|
| 860 |
# three channels by default. The standard approach to cfg applies it to all channels.
|
| 861 |
# This can be done by uncommenting the following line and commenting-out the line following that.
|
|
|
|
| 864 |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
|
| 865 |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
|
| 866 |
eps = torch.cat([half_eps, half_eps], dim=0)
|
| 867 |
+
|
| 868 |
return torch.cat([eps, rest], dim=1)
|
| 869 |
|
| 870 |
@staticmethod
|
|
|
|
| 872 |
dim: int,
|
| 873 |
end: int,
|
| 874 |
theta: float = 10000.0,
|
|
|
|
| 875 |
scale_factor: float = 1.0,
|
| 876 |
+
scale_watershed: float = 1.0,
|
| 877 |
timestep: float = 1.0,
|
| 878 |
):
|
| 879 |
"""
|
|
|
|
| 895 |
torch.Tensor: Precomputed frequency tensor with complex
|
| 896 |
exponentials.
|
| 897 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 898 |
|
| 899 |
+
if timestep < scale_watershed:
|
| 900 |
+
linear_factor = scale_factor
|
| 901 |
+
ntk_factor = 1.0
|
| 902 |
+
else:
|
| 903 |
+
linear_factor = 1.0
|
| 904 |
+
ntk_factor = scale_factor
|
| 905 |
|
| 906 |
+
theta = theta * ntk_factor
|
| 907 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float().cuda() / dim)) / linear_factor
|
| 908 |
|
| 909 |
timestep = torch.arange(end, device=freqs.device, dtype=torch.float) # type: ignore
|
| 910 |
|
|
|
|
| 914 |
freqs_cis_h = freqs_cis.view(end, 1, dim // 4, 1).repeat(1, end, 1, 1)
|
| 915 |
freqs_cis_w = freqs_cis.view(1, end, dim // 4, 1).repeat(end, 1, 1, 1)
|
| 916 |
freqs_cis = torch.cat([freqs_cis_h, freqs_cis_w], dim=-1).flatten(2)
|
| 917 |
+
|
| 918 |
return freqs_cis
|
| 919 |
|
| 920 |
def parameter_count(self) -> int:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 921 |
total_params = 0
|
| 922 |
|
| 923 |
def _recursive_count_params(module):
|
| 924 |
nonlocal total_params
|
|
|
|
| 925 |
for param in module.parameters(recurse=False):
|
| 926 |
total_params += param.numel()
|
| 927 |
for submodule in module.children():
|
|
|
|
| 940 |
def NextDiT_2B_patch2(**kwargs):
|
| 941 |
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, **kwargs)
|
| 942 |
|
| 943 |
+
|
| 944 |
def NextDiT_2B_GQA_patch2(**kwargs):
|
| 945 |
return NextDiT(patch_size=2, dim=2304, n_layers=24, n_heads=32, n_kv_heads=8, **kwargs)
|