Spaces:
Running
Running
| import gradio as gr | |
| from transformers import pipeline | |
| # Load the emotion detection pipeline | |
| emotion_pipeline = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion") | |
| def predict_emotion(text): | |
| result = emotion_pipeline(text)[0] | |
| label = result["label"] | |
| score = result["score"] | |
| return f"🧠 Emotion: {label.upper()} ({score:.2f})" | |
| # Gradio Interface | |
| demo = gr.Interface( | |
| fn=predict_emotion, | |
| inputs=gr.Textbox(lines=3, placeholder="Type something emotional..."), | |
| outputs="text", | |
| title="🎭 LM Studios Emotion Detector", | |
| description="Now with real emotional awareness: detects joy, anger, sadness, fear, love, and surprise.", | |
| theme="default", | |
| flagging_mode="never" | |
| ) | |
| demo.launch() | |