Spaces:
Runtime error
Runtime error
Commit
·
c89e6e0
1
Parent(s):
159baa9
update: app
Browse files
.gitignore
CHANGED
|
@@ -167,4 +167,5 @@ test.py
|
|
| 167 |
temp.txt
|
| 168 |
**.csv
|
| 169 |
binary-classifier/
|
| 170 |
-
wandb/
|
|
|
|
|
|
| 167 |
temp.txt
|
| 168 |
**.csv
|
| 169 |
binary-classifier/
|
| 170 |
+
wandb/
|
| 171 |
+
artifacts/
|
application_pages/chat_app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import importlib
|
|
|
|
| 2 |
|
| 3 |
import streamlit as st
|
| 4 |
import weave
|
|
@@ -7,27 +8,27 @@ from dotenv import load_dotenv
|
|
| 7 |
from guardrails_genie.guardrails import GuardrailManager
|
| 8 |
from guardrails_genie.llm import OpenAIModel
|
| 9 |
|
| 10 |
-
st.title(":material/robot: Guardrails Genie Playground")
|
| 11 |
-
|
| 12 |
-
load_dotenv()
|
| 13 |
-
weave.init(project_name="guardrails-genie")
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
if "
|
| 20 |
-
|
| 21 |
-
if "
|
| 22 |
-
|
| 23 |
-
if "
|
| 24 |
-
|
| 25 |
-
if "
|
| 26 |
-
|
| 27 |
-
if "
|
| 28 |
-
|
| 29 |
-
if "
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def initialize_guardrails():
|
|
@@ -44,18 +45,30 @@ def initialize_guardrails():
|
|
| 44 |
guardrail_name,
|
| 45 |
)(llm_model=OpenAIModel(model_name=survey_guardrail_model))
|
| 46 |
)
|
| 47 |
-
|
| 48 |
-
st.
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
st.session_state.guardrails_manager = GuardrailManager(
|
| 55 |
guardrails=st.session_state.guardrails
|
| 56 |
)
|
| 57 |
|
| 58 |
|
|
|
|
|
|
|
|
|
|
| 59 |
openai_model = st.sidebar.selectbox(
|
| 60 |
"OpenAI LLM for Chat", ["", "gpt-4o-mini", "gpt-4o"]
|
| 61 |
)
|
|
@@ -97,7 +110,7 @@ if st.session_state.initialize_guardrails:
|
|
| 97 |
|
| 98 |
if guardrails_response["safe"]:
|
| 99 |
st.markdown(
|
| 100 |
-
f"\n\n---\nPrompt is safe! Explore
|
| 101 |
)
|
| 102 |
|
| 103 |
with st.sidebar.status("Generating response from LLM..."):
|
|
|
|
| 1 |
import importlib
|
| 2 |
+
import os
|
| 3 |
|
| 4 |
import streamlit as st
|
| 5 |
import weave
|
|
|
|
| 8 |
from guardrails_genie.guardrails import GuardrailManager
|
| 9 |
from guardrails_genie.llm import OpenAIModel
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def initialize_session_state():
|
| 13 |
+
load_dotenv()
|
| 14 |
+
weave.init(project_name=os.getenv("WEAVE_PROJECT"))
|
| 15 |
+
|
| 16 |
+
if "guardrails" not in st.session_state:
|
| 17 |
+
st.session_state.guardrails = []
|
| 18 |
+
if "guardrail_names" not in st.session_state:
|
| 19 |
+
st.session_state.guardrail_names = []
|
| 20 |
+
if "guardrails_manager" not in st.session_state:
|
| 21 |
+
st.session_state.guardrails_manager = None
|
| 22 |
+
if "initialize_guardrails" not in st.session_state:
|
| 23 |
+
st.session_state.initialize_guardrails = False
|
| 24 |
+
if "system_prompt" not in st.session_state:
|
| 25 |
+
st.session_state.system_prompt = ""
|
| 26 |
+
if "user_prompt" not in st.session_state:
|
| 27 |
+
st.session_state.user_prompt = ""
|
| 28 |
+
if "test_guardrails" not in st.session_state:
|
| 29 |
+
st.session_state.test_guardrails = False
|
| 30 |
+
if "llm_model" not in st.session_state:
|
| 31 |
+
st.session_state.llm_model = None
|
| 32 |
|
| 33 |
|
| 34 |
def initialize_guardrails():
|
|
|
|
| 45 |
guardrail_name,
|
| 46 |
)(llm_model=OpenAIModel(model_name=survey_guardrail_model))
|
| 47 |
)
|
| 48 |
+
elif guardrail_name == "PromptInjectionClassifierGuardrail":
|
| 49 |
+
classifier_model_name = st.sidebar.selectbox(
|
| 50 |
+
"Classifier Guardrail Model",
|
| 51 |
+
[
|
| 52 |
+
"",
|
| 53 |
+
"ProtectAI/deberta-v3-base-prompt-injection-v2",
|
| 54 |
+
"wandb://geekyrakshit/guardrails-genie/model-6rwqup9b:v3",
|
| 55 |
+
],
|
| 56 |
)
|
| 57 |
+
if classifier_model_name != "":
|
| 58 |
+
st.session_state.guardrails.append(
|
| 59 |
+
getattr(
|
| 60 |
+
importlib.import_module("guardrails_genie.guardrails"),
|
| 61 |
+
guardrail_name,
|
| 62 |
+
)(model_name=classifier_model_name)
|
| 63 |
+
)
|
| 64 |
st.session_state.guardrails_manager = GuardrailManager(
|
| 65 |
guardrails=st.session_state.guardrails
|
| 66 |
)
|
| 67 |
|
| 68 |
|
| 69 |
+
initialize_session_state()
|
| 70 |
+
st.title(":material/robot: Guardrails Genie Playground")
|
| 71 |
+
|
| 72 |
openai_model = st.sidebar.selectbox(
|
| 73 |
"OpenAI LLM for Chat", ["", "gpt-4o-mini", "gpt-4o"]
|
| 74 |
)
|
|
|
|
| 110 |
|
| 111 |
if guardrails_response["safe"]:
|
| 112 |
st.markdown(
|
| 113 |
+
f"\n\n---\nPrompt is safe! Explore guardrail trace on [Weave]({call.ui_url})\n\n---\n"
|
| 114 |
)
|
| 115 |
|
| 116 |
with st.sidebar.status("Generating response from LLM..."):
|
application_pages/evaluation_app.py
CHANGED
|
@@ -64,10 +64,22 @@ def initialize_guardrail():
|
|
| 64 |
guardrail_name,
|
| 65 |
)(llm_model=OpenAIModel(model_name=survey_guardrail_model))
|
| 66 |
)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
st.session_state.guardrails = guardrails
|
| 72 |
st.session_state.guardrail_manager = GuardrailManager(guardrails=guardrails)
|
| 73 |
|
|
|
|
| 64 |
guardrail_name,
|
| 65 |
)(llm_model=OpenAIModel(model_name=survey_guardrail_model))
|
| 66 |
)
|
| 67 |
+
elif guardrail_name == "PromptInjectionClassifierGuardrail":
|
| 68 |
+
classifier_model_name = st.sidebar.selectbox(
|
| 69 |
+
"Classifier Guardrail Model",
|
| 70 |
+
[
|
| 71 |
+
"",
|
| 72 |
+
"ProtectAI/deberta-v3-base-prompt-injection-v2",
|
| 73 |
+
"wandb://geekyrakshit/guardrails-genie/model-6rwqup9b:v3",
|
| 74 |
+
],
|
| 75 |
)
|
| 76 |
+
if classifier_model_name:
|
| 77 |
+
st.session_state.guardrails.append(
|
| 78 |
+
getattr(
|
| 79 |
+
import_module("guardrails_genie.guardrails"),
|
| 80 |
+
guardrail_name,
|
| 81 |
+
)(model_name=classifier_model_name)
|
| 82 |
+
)
|
| 83 |
st.session_state.guardrails = guardrails
|
| 84 |
st.session_state.guardrail_manager = GuardrailManager(guardrails=guardrails)
|
| 85 |
|
guardrails_genie/guardrails/__init__.py
CHANGED
|
@@ -1,8 +1,11 @@
|
|
| 1 |
-
from .injection import
|
|
|
|
|
|
|
|
|
|
| 2 |
from .manager import GuardrailManager
|
| 3 |
|
| 4 |
__all__ = [
|
| 5 |
"PromptInjectionSurveyGuardrail",
|
| 6 |
-
"
|
| 7 |
"GuardrailManager",
|
| 8 |
]
|
|
|
|
| 1 |
+
from .injection import (
|
| 2 |
+
PromptInjectionClassifierGuardrail,
|
| 3 |
+
PromptInjectionSurveyGuardrail,
|
| 4 |
+
)
|
| 5 |
from .manager import GuardrailManager
|
| 6 |
|
| 7 |
__all__ = [
|
| 8 |
"PromptInjectionSurveyGuardrail",
|
| 9 |
+
"PromptInjectionClassifierGuardrail",
|
| 10 |
"GuardrailManager",
|
| 11 |
]
|
guardrails_genie/guardrails/injection/__init__.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from .protectai_guardrail import
|
| 2 |
from .survey_guardrail import PromptInjectionSurveyGuardrail
|
| 3 |
|
| 4 |
-
__all__ = ["PromptInjectionSurveyGuardrail", "
|
|
|
|
| 1 |
+
from .protectai_guardrail import PromptInjectionClassifierGuardrail
|
| 2 |
from .survey_guardrail import PromptInjectionSurveyGuardrail
|
| 3 |
|
| 4 |
+
__all__ = ["PromptInjectionSurveyGuardrail", "PromptInjectionClassifierGuardrail"]
|
guardrails_genie/guardrails/injection/protectai_guardrail.py
CHANGED
|
@@ -5,16 +5,25 @@ import weave
|
|
| 5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
| 6 |
from transformers.pipelines.base import Pipeline
|
| 7 |
|
|
|
|
|
|
|
| 8 |
from ..base import Guardrail
|
| 9 |
|
| 10 |
|
| 11 |
-
class
|
| 12 |
model_name: str = "ProtectAI/deberta-v3-base-prompt-injection-v2"
|
| 13 |
_classifier: Optional[Pipeline] = None
|
| 14 |
|
| 15 |
def model_post_init(self, __context):
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
self._classifier = pipeline(
|
| 19 |
"text-classification",
|
| 20 |
model=model,
|
|
|
|
| 5 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
|
| 6 |
from transformers.pipelines.base import Pipeline
|
| 7 |
|
| 8 |
+
import wandb
|
| 9 |
+
|
| 10 |
from ..base import Guardrail
|
| 11 |
|
| 12 |
|
| 13 |
+
class PromptInjectionClassifierGuardrail(Guardrail):
|
| 14 |
model_name: str = "ProtectAI/deberta-v3-base-prompt-injection-v2"
|
| 15 |
_classifier: Optional[Pipeline] = None
|
| 16 |
|
| 17 |
def model_post_init(self, __context):
|
| 18 |
+
if self.model_name.startswith("wandb://"):
|
| 19 |
+
api = wandb.Api()
|
| 20 |
+
artifact = api.artifact(self.model_name.removeprefix("wandb://"))
|
| 21 |
+
artifact_dir = artifact.download()
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(artifact_dir)
|
| 23 |
+
model = AutoModelForSequenceClassification.from_pretrained(artifact_dir)
|
| 24 |
+
else:
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
|
| 26 |
+
model = AutoModelForSequenceClassification.from_pretrained(self.model_name)
|
| 27 |
self._classifier = pipeline(
|
| 28 |
"text-classification",
|
| 29 |
model=model,
|