Spaces:
Paused
Paused
File size: 18,130 Bytes
f647629 561151f f647629 561151f f647629 561151f 1ec3391 561151f f647629 561151f f647629 561151f f647629 561151f f647629 1ec3391 561151f 1ec3391 561151f 1ec3391 561151f 1ec3391 561151f 1ec3391 f647629 1ec3391 f647629 a2dc155 561151f a2dc155 561151f a2dc155 561151f a2dc155 561151f a2dc155 561151f a2dc155 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f 7b2da21 561151f 7b2da21 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f f647629 561151f a2dc155 561151f a2dc155 561151f a2dc155 561151f f647629 561151f f647629 561151f a2dc155 561151f a2dc155 561151f 1ec3391 a2dc155 1ec3391 561151f f647629 561151f f647629 561151f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
#!/usr/bin/env python
"""
Weights & Biases MCP Server - A Model Context Protocol server for querying Weights & Biases data.
This server provides tools for:
- Querying Weave traces and evaluations
- Counting traces efficiently
- Executing GraphQL queries against W&B experiment data
- Creating shareable reports with visualizations
- Getting help via wandbot support agent
- Discovering available entities and projects
"""
import io
import json
import logging
import os
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional, Union
import wandb
from dotenv import load_dotenv
from mcp.server.fastmcp import FastMCP
# Import Weave for tracing MCP tool calls
try:
import weave
WEAVE_AVAILABLE = True
except ImportError:
weave = None
WEAVE_AVAILABLE = False
from wandb_mcp_server.mcp_tools.list_wandb_entities_projects import (
LIST_ENTITY_PROJECTS_TOOL_DESCRIPTION,
list_entity_projects,
)
from wandb_mcp_server.mcp_tools.create_report import (
CREATE_WANDB_REPORT_TOOL_DESCRIPTION,
create_report,
)
from wandb_mcp_server.mcp_tools.count_traces import (
COUNT_WEAVE_TRACES_TOOL_DESCRIPTION,
count_traces,
)
from wandb_mcp_server.mcp_tools.query_wandb_gql import (
QUERY_WANDB_GQL_TOOL_DESCRIPTION,
query_paginated_wandb_gql,
)
from wandb_mcp_server.mcp_tools.query_wandbot import (
WANDBOT_TOOL_DESCRIPTION,
query_wandbot_api,
)
from wandb_mcp_server.mcp_tools.query_weave import (
QUERY_WEAVE_TRACES_TOOL_DESCRIPTION,
query_paginated_weave_traces,
)
from wandb_mcp_server.utils import get_rich_logger, get_server_args, ServerMCPArgs
# Export key functions for HF Spaces app
__all__ = [
'validate_and_get_api_key',
'validate_api_key',
'configure_wandb_logging',
'initialize_weave_tracing',
'create_mcp_server',
'register_tools',
'ServerMCPArgs',
'cli'
]
from wandb_mcp_server.weave_api.models import QueryResult
print('Starting W&B MCP Server...', file=sys.stderr)
# Load environment variables
load_dotenv(dotenv_path=Path(__file__).parent.parent.parent / ".env")
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = get_rich_logger(
"weave-mcp-server", default_level_str="WARNING", env_var_name="MCP_SERVER_LOG_LEVEL"
)
# ===============================================================================
# SECTION 1: W&B AUTHENTICATION & API KEY SETUP
# ===============================================================================
def validate_api_key(api_key: str) -> bool:
"""
Validate a W&B API key by attempting to use it.
Args:
api_key: The W&B API key to validate
Returns:
True if the API key is valid, False otherwise
"""
try:
# Try to create an API instance and fetch the viewer
# This validates the key without setting any global state
api = wandb.Api(api_key=api_key)
_ = api.viewer # This will fail if the key is invalid
logger.info("W&B API key validated successfully.")
return True
except Exception as e:
logger.error(f"Invalid W&B API key: {e}")
return False
def validate_and_get_api_key(args: ServerMCPArgs) -> Optional[str]:
"""
Validate and retrieve the W&B API key from various sources.
For HTTP transport: API key is optional (clients provide their own)
For STDIO transport: API key is required from environment
Priority order:
1. Command-line argument (--wandb-api-key)
2. Environment variable (WANDB_API_KEY)
3. .netrc file
4. .env file
Args:
args: Parsed command-line arguments
Returns:
The W&B API key if found, None otherwise
Raises:
ValueError: If no API key is found for STDIO transport
"""
api_key = args.wandb_api_key or get_server_args().wandb_api_key
# For HTTP transport, API key is optional (clients provide their own)
if args.transport == "http":
if api_key:
logger.info("Server W&B API key configured (for server operations)")
else:
logger.info("No server W&B API key configured (clients will provide their own)")
return api_key
# For STDIO transport, API key is required
if not api_key:
raise ValueError(
"WANDB_API_KEY must be set for STDIO transport. Options:\n"
"1. Command-line: --wandb-api-key YOUR_KEY\n"
"2. Environment: export WANDB_API_KEY=YOUR_KEY\n"
"3. .env file: WANDB_API_KEY=YOUR_KEY\n"
"4. .netrc file: machine api.wandb.ai login user password YOUR_KEY\n"
"\nGet your API key at: https://wandb.ai/authorize"
)
return api_key
# ===============================================================================
# SECTION 2: W&B LOGGING CONFIGURATION
# ===============================================================================
def configure_wandb_logging() -> None:
"""
Configure W&B and Weave logging behavior to avoid interference with MCP protocol.
(because Weave outputs created or fetched traces)
Environment variables that control logging:
- WANDB_SILENT: Set to "True" to suppress all W&B output (default: True)
- WEAVE_SILENT: Set to "True" to suppress all Weave output (default: True)
- MCP_SERVER_LOG_LEVEL: Set server log level (DEBUG, INFO, WARNING, ERROR)
- WANDB_CONSOLE: Set to "off" to disable console output (default: off)
"""
# Ensure W&B operates silently by default to not interfere with MCP protocol
os.environ.setdefault("WANDB_SILENT", "True")
os.environ.setdefault("WEAVE_SILENT", "True")
# Configure W&B to suppress console output
try:
wandb.setup(settings=wandb.Settings(silent=True, console="off"))
logger.debug("W&B configured for silent operation")
except Exception as e:
logger.warning(f"Could not apply wandb.setup settings: {e}")
# Silence specific loggers that might interfere with MCP
weave_logger = get_rich_logger("weave")
weave_logger.setLevel(logging.ERROR)
gql_transport_logger = get_rich_logger("gql.transport.requests")
gql_transport_logger.setLevel(logging.ERROR)
# Allow users to enable more verbose W&B logging if needed for debugging
if os.environ.get("WANDB_DEBUG", "").lower() == "true":
logger.info("W&B debug logging enabled via WANDB_DEBUG=true")
os.environ["WANDB_SILENT"] = "False"
wandb_logger = get_rich_logger("wandb")
wandb_logger.setLevel(logging.DEBUG)
def initialize_weave_tracing() -> bool:
"""
Initialize Weave tracing for MCP operations using the official FastMCP integration.
According to https://weave-docs.wandb.ai/guides/integrations/mcp, Weave automatically
traces FastMCP operations (tools, resources, prompts) when weave.init() is called.
Returns:
True if Weave was successfully initialized, False otherwise
"""
if not WEAVE_AVAILABLE:
logger.debug("Weave not available - MCP operations will not be traced")
return False
# Check if Weave tracing is disabled
if os.environ.get("WEAVE_DISABLED", "true").lower() == "true":
logger.debug("Weave tracing disabled via WEAVE_DISABLED=true")
return False
# Get Weave project configuration
entity = os.environ.get("MCP_LOGS_WANDB_ENTITY") or os.environ.get("WANDB_ENTITY")
project = os.environ.get("MCP_LOGS_WANDB_PROJECT", "wandb-mcp-logs")
if not entity:
logger.debug("No WANDB_ENTITY or MCP_LOGS_WANDB_ENTITY set - MCP operations will not be traced to Weave")
return False
try:
weave_project = f"{entity}/{project}"
logger.info(f"Initializing Weave tracing for MCP operations: {weave_project}")
# Set optional MCP configuration for list operations tracing
if os.environ.get("MCP_TRACE_LIST_OPERATIONS", "").lower() == "true":
os.environ["MCP_TRACE_LIST_OPERATIONS"] = "true"
logger.info("MCP list operations tracing enabled")
# Initialize Weave - this automatically enables tracing for FastMCP operations
weave.init(weave_project)
logger.info("Weave tracing initialized - FastMCP operations will be automatically traced")
return True
except Exception as e:
logger.error(f"Failed to initialize Weave tracing: {e}")
return False
# ===============================================================================
# SECTION 3: MCP TOOL REGISTRATION
# ===============================================================================
def register_tools(mcp_instance: FastMCP) -> None:
"""
Register all W&B MCP tools on the given FastMCP instance.
Available tools:
- query_weave_traces_tool: Query LLM traces with filtering and pagination
- count_weave_traces_tool: Efficiently count traces without returning data
- query_wandb_tool: Execute GraphQL queries against W&B experiment data
- create_wandb_report_tool: Create shareable reports with visualizations
- query_wandb_entity_projects: List available entities and projects
- query_wandb_support_bot: Get help via wandbot RAG-powered support
Args:
mcp_instance: The FastMCP instance to register tools on
"""
@mcp_instance.tool(description=QUERY_WEAVE_TRACES_TOOL_DESCRIPTION)
async def query_weave_traces_tool(
entity_name: str,
project_name: str,
filters: Dict[str, Any] = {},
sort_by: str = "started_at",
sort_direction: str = "desc",
limit: int = 10000000,
include_costs: bool = True,
include_feedback: bool = True,
columns: List[str] = [],
expand_columns: List[str] = [],
truncate_length: int = 200,
return_full_data: bool = False,
metadata_only: bool = False,
) -> str:
try:
result_model: QueryResult = await query_paginated_weave_traces(
entity_name=entity_name,
project_name=project_name,
chunk_size=50,
filters=filters,
sort_by=sort_by,
sort_direction=sort_direction,
target_limit=limit,
include_costs=include_costs,
include_feedback=include_feedback,
columns=columns,
expand_columns=expand_columns,
truncate_length=truncate_length,
return_full_data=return_full_data,
metadata_only=metadata_only,
)
return result_model.model_dump_json()
except Exception as e:
logger.error(f"Error in query_weave_traces_tool: {e}", exc_info=True)
raise e
@mcp_instance.tool(description=COUNT_WEAVE_TRACES_TOOL_DESCRIPTION)
async def count_weave_traces_tool(
entity_name: str, project_name: str, filters: Optional[Dict[str, Any]] = None
) -> str:
try:
total_count = count_traces(
entity_name=entity_name, project_name=project_name, filters=filters or {}
)
# Also count root traces for better understanding of project scope
root_filters = filters.copy() if filters else {}
root_filters["trace_roots_only"] = True
root_traces_count = count_traces(
entity_name=entity_name,
project_name=project_name,
filters=root_filters,
)
return json.dumps(
{"total_count": total_count, "root_traces_count": root_traces_count}
)
except Exception as e:
logger.error(f"Error in count_weave_traces_tool: {e}")
return f"Error counting traces: {str(e)}"
@mcp_instance.tool(description=QUERY_WANDB_GQL_TOOL_DESCRIPTION)
async def query_wandb_tool(
query: str,
variables: Optional[Dict[str, Any]] = None,
max_items: int = 100,
items_per_page: int = 20,
) -> Dict[str, Any]:
return query_paginated_wandb_gql(query, variables, max_items, items_per_page)
@mcp_instance.tool(description=CREATE_WANDB_REPORT_TOOL_DESCRIPTION)
async def create_wandb_report_tool(
entity_name: str,
project_name: str,
title: str,
description: Optional[str] = None,
markdown_report_text: str = "",
plots_html: Optional[Union[Dict[str, str], str]] = None,
) -> str:
try:
result = create_report(
entity_name=entity_name,
project_name=project_name,
title=title,
description=description,
markdown_report_text=markdown_report_text,
plots_html=plots_html,
)
# Build return message with processing details
result_message = f"The report was saved here: {result['url']}"
if result['processing_details']:
result_message += "\n\nReport processing details:\n" + "\n".join(f"- {detail}" for detail in result['processing_details'])
return result_message
except Exception as e:
raise e
@mcp_instance.tool(description=LIST_ENTITY_PROJECTS_TOOL_DESCRIPTION)
def query_wandb_entity_projects(entity: Optional[str] = None) -> Dict[str, List[Dict[str, Any]]]:
return list_entity_projects(entity)
@mcp_instance.tool(description=WANDBOT_TOOL_DESCRIPTION)
def query_wandb_support_bot(question: str) -> Dict[str, Any]:
return query_wandbot_api(question)
# ===============================================================================
# SECTION 4: MCP SERVER SETUP (STDIO & HTTP)
# ===============================================================================
def create_mcp_server(transport: str, host: str = "localhost", port: Optional[int] = None) -> FastMCP:
"""
Create and configure a FastMCP server for the specified transport.
Args:
transport: Transport type ("stdio" or "http")
host: Host for HTTP transport (default: "localhost")
port: Port for HTTP transport (default: 8080)
Returns:
Configured FastMCP instance with all tools registered
Raises:
ValueError: If transport type is invalid
Authentication:
- STDIO transport: Uses environment variables (WANDB_API_KEY required)
- HTTP transport: Clients provide W&B API key as Bearer token
Set MCP_AUTH_DISABLED=true to disable auth (development only)
"""
if transport == "http":
port = port if port is not None else 8080
logger.info(f"Configuring HTTP server on {host}:{port}")
mcp = FastMCP("weave-mcp-server", host=host, port=port, stateless_http=True)
# Log authentication status for HTTP
if os.environ.get("MCP_AUTH_DISABLED", "false").lower() == "true":
logger.warning("⚠️ MCP authentication is DISABLED - server is publicly accessible")
else:
logger.info("🔒 MCP authentication enabled - clients must provide W&B API key as Bearer token")
elif transport == "stdio":
logger.info("Configuring stdio server")
mcp = FastMCP("weave-mcp-server")
logger.info("STDIO transport uses environment variable authentication")
else:
raise ValueError(f"Invalid transport type: {transport}. Must be 'stdio' or 'http'")
# Register all tools
register_tools(mcp)
return mcp
# ===============================================================================
# SECTION 5: MAIN CLI ENTRY POINT
# ===============================================================================
def cli():
"""
Main command-line interface for starting the Weights & Biases MCP Server.
Usage:
wandb_mcp_server [OPTIONS]
Options:
--transport {stdio,http} Transport type (default: stdio)
--host HOST Host for HTTP transport (default: localhost)
--port PORT Port for HTTP transport (default: 8080)
--wandb-api-key KEY W&B API key (can also use env var)
Environment Variables:
WANDB_API_KEY W&B API key (required for STDIO, optional for HTTP)
MCP_SERVER_LOG_LEVEL Server log level (DEBUG, INFO, WARNING, ERROR)
WANDB_SILENT Set to "False" to enable W&B output (default: True)
WEAVE_SILENT Set to "False" to enable Weave output (default: True)
WANDB_DEBUG Set to "true" to enable W&B debug logging
MCP_AUTH_DISABLED Set to "true" to disable HTTP auth (dev only)
"""
# Parse command line arguments
import simple_parsing
args = simple_parsing.parse(ServerMCPArgs)
# Configure W&B logging behavior
configure_wandb_logging()
# Validate and get API key
api_key = validate_and_get_api_key(args)
# Validate API key if we have one (but don't set global state)
if api_key:
validate_api_key(api_key)
# Initialize Weave tracing for MCP tool calls
weave_initialized = initialize_weave_tracing()
logger.info("Starting Weights & Biases MCP Server")
logger.info(f"Transport: {args.transport}")
logger.info(f"API Key configured: Yes")
# Validate transport type
if args.transport not in ["stdio", "http"]:
raise ValueError(f"Invalid transport type: {args.transport}. Must be 'stdio' or 'http'")
# Create and run the MCP server
server = create_mcp_server(args.transport, args.host, args.port)
if args.transport == "http":
logger.info(f"Starting HTTP server on {args.host}:{args.port or 8080}")
server.run(transport="streamable-http")
else:
logger.info("Starting stdio server")
server.run(transport="stdio")
if __name__ == "__main__":
cli() |