Spaces:
Paused
Paused
File size: 22,981 Bytes
f647629 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
# noqa: D100
"""Integration tests that verify Anthropic selects `query_wandb_tool`.
These tests send natural-language questions about the W&B *Models* data for the
`wandb-applied-ai-team/mcp-tests` project. The Anthropic model should respond
with a `tool_use` invoking `query_wandb_tool`, which we then execute and
validate.
"""
import json
import os
import time
import uuid
from datetime import datetime
from typing import Any, Dict, List
import pytest
from tests.anthropic_test_utils import (
call_anthropic,
check_correctness_tool,
extract_anthropic_tool_use,
)
from wandb_mcp_server.mcp_tools.query_wandb_gql import (
QUERY_WANDB_GQL_TOOL_DESCRIPTION,
query_paginated_wandb_gql,
)
from wandb_mcp_server.mcp_tools.tools_utils import generate_anthropic_tool_schema
from wandb_mcp_server.utils import get_git_commit, get_rich_logger
# Root logging configuration
logger = get_rich_logger(__name__)
# weave.init("wandb-applied-ai-team/wandb-mcp-server-test-outputs")
# os.environ["WANDB_SILENT"] = "true"
# -----------------------------------------------------------------------------
# Custom JSON encoder for datetime objects (similar to test_query_weave_traces.py)
# -----------------------------------------------------------------------------
class DateTimeEncoder(json.JSONEncoder):
"""JSON encoder that can handle datetime objects."""
def default(self, obj):
if isinstance(obj, datetime):
return obj.isoformat()
return super().default(obj)
# -----------------------------------------------------------------------------
# Environment guards
# -----------------------------------------------------------------------------
WANDB_API_KEY = os.getenv("WANDB_API_KEY")
ANTHROPIC_API_KEY = os.getenv("ANTHROPIC_API_KEY")
if not WANDB_API_KEY:
pytest.skip(
"WANDB_API_KEY environment variable not set; skipping live GraphQL tests.",
allow_module_level=True,
)
if not ANTHROPIC_API_KEY:
pytest.skip(
"ANTHROPIC_API_KEY environment variable not set; skipping Anthropic tests.",
allow_module_level=True,
)
# -----------------------------------------------------------------------------
# Static test context
# -----------------------------------------------------------------------------
TEST_WANDB_ENTITY = "wandb-applied-ai-team"
TEST_WANDB_PROJECT = "mcp-tests"
# MODEL_NAME = "claude-3-7-sonnet-20250219"
# MODEL_NAME = "claude-4-sonnet-20250514"
MODEL_NAME = "claude-4-opus-20250514"
CORRECTNESS_MODEL_NAME = "claude-3-5-haiku-20241022"
# -----------------------------------------------------------------------------
# Build tool schema for Anthropic
# -----------------------------------------------------------------------------
available_tools: Dict[str, Dict[str, Any]] = {
"query_paginated_wandb_gql": {
"function": query_paginated_wandb_gql,
"schema": generate_anthropic_tool_schema(
func=query_paginated_wandb_gql,
description=QUERY_WANDB_GQL_TOOL_DESCRIPTION,
),
}
}
tools: List[Dict[str, Any]] = [available_tools["query_paginated_wandb_gql"]["schema"]]
# -----------------------------------------------------------------------------
# Compute baseline runCount once so that tests have a stable expected value
# -----------------------------------------------------------------------------
BASELINE_QUERY = """
query ProjectRunCount($entity: String!, $project: String!) {
project(name: $project, entityName: $entity) {
runCount
}
}
"""
BASELINE_VARIABLES = {"entity": TEST_WANDB_ENTITY, "project": TEST_WANDB_PROJECT}
# Compute baseline
logger.info(
"Fetching baseline runCount for %s/%s", TEST_WANDB_ENTITY, TEST_WANDB_PROJECT
)
_baseline_result = query_paginated_wandb_gql(BASELINE_QUERY, BASELINE_VARIABLES)
BASELINE_RUN_COUNT: int = _baseline_result["project"]["runCount"]
logger.info("Baseline runCount = %s", BASELINE_RUN_COUNT)
# -----------------------------------------------------------------------------
# Natural-language queries to test
# -----------------------------------------------------------------------------
test_queries = [
{
"index": 0,
"question": "How many runs are currently logged in the `{project_name}` project under the `{entity_name}` entity?",
"expected_output": 37,
},
{
"index": 1,
"question": "What's the total experiment count for `{entity_name}/{project_name}`?",
"expected_output": 37,
},
{
"index": 2,
"question": "In `{project_name}` in entity `{entity_name}` how many runs were run on April 29th 2025?",
"expected_output": 37,
},
{
"index": 3,
"question": "Could you report the number of tracked runs in `{entity_name}/{project_name}` with lr 0.002?",
"expected_output": 7,
},
{
"index": 4,
"question": "what was the run with the best eval loss in the `{project_name}` project belonging to `{entity_name}`.",
"expected_output": "run_id: h0fm5qp5 OR run_name: transformer_7_bs-128_lr-0.008_5593616",
},
{
"index": 5,
"question": "How many steps in run gtng2y4l `{entity_name}/{project_name}` right now.",
"expected_output": 750000,
},
{
"index": 6,
"question": "How many steps in run transformer_25_bs-33554432_lr-0.026000000000000002_2377215 `{entity_name}/{project_name}` right now.",
"expected_output": 750000,
},
{
"index": 7,
"question": "What's the batch size of the run with best evaluation accuracy for `{project_name}` inside `{entity_name}`?",
"expected_output": 16,
},
# {
# "index": 8, # Example if uncommented
# "question": "Count the runs in my `{entity_name}` entity for the `{project_name}` project.",
# "expected_output": BASELINE_RUN_COUNT,
# },
# {
# "index": 9, # Example if uncommented
# "question": "How big is the experiment set for `{entity_name}/{project_name}`?",
# "expected_output": BASELINE_RUN_COUNT,
# },
# {
# "index": 10, # Example if uncommented
# "question": "Tell me the number of runs tracked in `{project_name}` (entity `{entity_name}`).",
# "expected_output": BASELINE_RUN_COUNT,
# },
]
# -----------------------------------------------------------------------------
# Tests
# -----------------------------------------------------------------------------
@pytest.mark.parametrize(
"sample",
test_queries,
ids=[f"sample_{i}" for i, _ in enumerate(test_queries)],
)
def test_query_wandb_gql(sample, weave_results_dir):
"""End-to-end test: NL question → Anthropic → tool_use → result validation."""
start_time = time.monotonic()
current_git_commit = get_git_commit()
git_commit_id = f"commit_{current_git_commit}"
current_test_file_name = os.path.basename(__file__)
# Find the index of the current sample for unique naming and metadata
sample_index = -1
for i, s in enumerate(test_queries):
if s == sample:
sample_index = i
break
test_case_name = f"gql_query_{sample_index}_{sample.get('question', 'unknown_question')[:20].replace(' ', '_')}"
query_text = sample["question"].format(
entity_name=TEST_WANDB_ENTITY,
project_name=TEST_WANDB_PROJECT,
)
expected_output = sample["expected_output"]
logger.info("\n==============================")
logger.info("QUERY: %s", query_text)
# --- Retry Logic Setup ---
max_retries = 1
last_reasoning = "No correctness check performed yet."
last_is_correct = False
first_call_assistant_response = None # Store the response dict from the first model
tool_result = None # Store the result of executing the tool
tool_name_used_in_test = None
tool_input_used_in_test = None
# Initialize log_data_for_file for the current test sample
final_log_data_for_file = {
"metadata": {
"sample_name": test_case_name,
"test_case_index": sample_index,
"git_commit_id": git_commit_id,
"source_test_file_name": current_test_file_name,
"test_query_text": query_text,
"expected_test_output": str(expected_output),
"retry_attempt": 0, # Will be updated in the loop
"max_retries_configured": max_retries,
},
"inputs": { # Inputs to the overall test/evaluation
"test_query": query_text,
"expected_value": str(expected_output),
},
"output": {}, # Will store tool output and correctness check details
"score": False, # Default to False, updated on success
"scorer_name": "gql_correctness_assertion", # Specific scorer for these tests
"metrics": {}, # Will store execution_latency_seconds
}
try:
# Initial messages for the first attempt
messages_first_call = [{"role": "user", "content": query_text}]
for attempt in range(max_retries + 1):
logger.info(f"\n--- Attempt {attempt + 1} / {max_retries + 1} ---")
final_log_data_for_file["metadata"]["retry_attempt"] = attempt + 1
if attempt > 0:
# We are retrying. Add the previous assistant response and a user message with feedback.
if first_call_assistant_response:
messages_first_call.append(
first_call_assistant_response
) # Add previous assistant message (contains tool use)
else:
# Should not happen in retry logic, but defensively handle
logger.warning(
"Attempting retry, but no previous assistant response found."
)
# Construct the user message asking for a retry
retry_user_message_content = f"""
Executing the previous tool call resulted in:
```json
{json.dumps(tool_result, indent=2, cls=DateTimeEncoder)}
```
A separate check determined this result was incorrect for the original query.
The reasoning provided was: "{last_reasoning}".
Please re-analyze the original query ("{query_text}") and the result from your previous attempt, then try generating the 'query_paginated_wandb_gql' tool call again.
"""
messages_first_call.append(
{"role": "user", "content": retry_user_message_content}
)
# --- First Call: Get the query_paginated_wandb_gql tool use ---
response = call_anthropic(
model_name=MODEL_NAME,
messages=messages_first_call,
tools=tools, # Provide the GQL tool schema
)
first_call_assistant_response = (
response # Store this response for potential next retry
)
_, tool_name, tool_input, _ = extract_anthropic_tool_use(response)
tool_name_used_in_test = tool_name
tool_input_used_in_test = tool_input
logger.info(f"Attempt {attempt + 1}: Tool emitted by model: {tool_name}")
logger.info(
f"Attempt {attempt + 1}: Tool input: {json.dumps(tool_input, indent=2)}"
)
assert tool_name == "query_paginated_wandb_gql", (
f"Attempt {attempt + 1}: Expected 'query_paginated_wandb_gql', got '{tool_name}'"
)
# --- Execute the GQL tool ---
try:
tool_result = available_tools[tool_name]["function"](**tool_input)
logger.info(
f"Attempt {attempt + 1}: Tool result: {json.dumps(tool_result, indent=2, cls=DateTimeEncoder)}"
) # Log full result
except Exception as e:
logger.error(
f"Attempt {attempt + 1}: Error executing tool '{tool_name}' with input {tool_input}: {e}",
exc_info=True,
)
final_log_data_for_file["output"]["tool_execution_error_details"] = str(
e
)
# If tool execution fails, we might want to stop retrying for this sample or handle differently.
# For now, it will proceed to correctness check which will likely fail or be skipped.
# Depending on the error, we might want to `pytest.fail` or `raise` to stop the current attempt.
# For this iteration, we'll let it go to the correctness check, which will likely fail it.
last_is_correct = False
last_reasoning = f"Tool execution failed: {e}"
if attempt >= max_retries: # If this was the last attempt
raise # Re-raise the exception to fail the test
continue # Skip to next retry attempt
# --- Second Call: Perform Correctness Check (Separate Task) ---
logger.info(
f"\n--- Starting Correctness Check for Attempt {attempt + 1} ---"
)
try:
# Prepare the prompt for the check - provide all context clearly
correctness_prompt = f"""
Please evaluate if the provided 'Actual Tool Result' correctly addresses the 'Original User Query' and seems consistent with the 'Expected Output'. Use the 'check_correctness_tool' to provide your reasoning and conclusion.
Original User Query:
"{query_text}"
Expected Output (for context, may not be directly comparable in structure):
{json.dumps(expected_output, indent=2, cls=DateTimeEncoder)}
Actual Tool Result from 'query_paginated_wandb_gql':
{json.dumps(tool_result, indent=2, cls=DateTimeEncoder)}
"""
messages_check_call = [{"role": "user", "content": correctness_prompt}]
correctness_response = call_anthropic(
model_name=CORRECTNESS_MODEL_NAME,
messages=messages_check_call,
check_correctness_tool=check_correctness_tool,
)
logger.info(
f"Attempt {attempt + 1}: Correctness check response:\n{correctness_response}\n\n"
)
# --- Extract and Validate Correctness Tool Use ---
_, check_tool_name, check_tool_input, _ = extract_anthropic_tool_use(
correctness_response
)
assert check_tool_name == "check_correctness_tool", (
f"Attempt {attempt + 1}: Expected correctness tool, got {check_tool_name}"
)
assert "reasoning" in check_tool_input, (
f"Attempt {attempt + 1}: Correctness tool missing 'reasoning'"
)
assert "is_correct" in check_tool_input, (
f"Attempt {attempt + 1}: Correctness tool missing 'is_correct'"
)
# 2. Extract the data from the input dictionary
try:
reasoning_text = check_tool_input["reasoning"]
is_correct_flag = check_tool_input["is_correct"]
# Store the latest results
last_reasoning = reasoning_text
last_is_correct = is_correct_flag
logger.info(
f"Attempt {attempt + 1}: Correctness Reasoning: {reasoning_text}"
)
logger.info(
f"Attempt {attempt + 1}: Is Correct according to LLM: {is_correct_flag}"
)
if is_correct_flag:
logger.info(
f"--- Correctness check passed on attempt {attempt + 1}. ---"
)
final_log_data_for_file["score"] = True
break # Exit the loop successfully
# If not correct, and this is the last attempt, the loop will end naturally.
except KeyError as e:
logger.error(
f"Attempt {attempt + 1}: Missing expected key in correctness tool input: {e}"
)
logger.error(
f"Attempt {attempt + 1}: Full input received: {check_tool_input}"
)
last_is_correct = False
last_reasoning = f"Correctness tool response missing key: {e}"
final_log_data_for_file["output"]["assertion_error_details"] = (
f"Correctness tool response missing key: {e}"
)
if attempt >= max_retries:
pytest.fail(
f"Attempt {attempt + 1}: Correctness tool response was missing key: {e}"
)
continue # To next retry
except Exception as e:
logger.error(
f"Attempt {attempt + 1}: Error processing correctness tool input: {e}",
exc_info=True,
)
last_is_correct = False
last_reasoning = f"Failed to process correctness tool input: {e}"
final_log_data_for_file["output"]["assertion_error_details"] = (
f"Failed to process correctness tool input: {e}"
)
if attempt >= max_retries:
pytest.fail(
f"Attempt {attempt + 1}: Failed to process correctness tool input: {e}"
)
continue # To next retry
except Exception as e:
logger.error(
f"Attempt {attempt + 1}: Error during correctness check for query '{query_text}': {e}",
exc_info=True,
)
last_is_correct = False
last_reasoning = f"Correctness check failed with exception: {e}"
final_log_data_for_file["output"]["assertion_error_details"] = (
f"Correctness check failed with exception: {e}"
)
if attempt >= max_retries:
pytest.fail(
f"Attempt {attempt + 1}: Correctness check failed with exception: {e}"
)
continue # To next retry
# After the loop, if not last_is_correct, it means all retries failed or it failed on the last attempt.
if not last_is_correct and attempt >= max_retries:
pytest.fail(
f"LLM evaluation failed after {max_retries + 1} attempts for sample {sample_index}. "
f"Final is_correct_flag is `{last_is_correct}`. "
f"Final Reasoning: '{last_reasoning}'"
)
except Exception as test_exec_exception:
# Catch any exception that might cause the test to fail before all retries are done
# or even before the loop fully completes.
logger.error(
f"Test execution for sample {sample_index} failed globally: {test_exec_exception}",
exc_info=True,
)
final_log_data_for_file["score"] = False
final_log_data_for_file["output"]["test_exception"] = str(test_exec_exception)
# We will write the JSON in `finally`, then re-raise or let pytest handle the failure.
raise # Re-raise the caught exception to ensure the test is marked as failed by pytest
finally:
end_time = time.monotonic()
execution_latency_seconds = end_time - start_time
final_log_data_for_file["metrics"]["execution_latency_seconds"] = (
execution_latency_seconds
)
final_log_data_for_file["metadata"]["final_attempt_number_for_json"] = (
final_log_data_for_file["metadata"]["retry_attempt"]
) # Should be updated inside loop
# Populate output details from the last successful (or last attempted) tool call
final_log_data_for_file["output"]["tool_name"] = tool_name_used_in_test
final_log_data_for_file["output"]["tool_input"] = (
json.dumps(tool_input_used_in_test, indent=2)
if tool_input_used_in_test
else None
)
final_log_data_for_file["output"]["tool_result"] = (
json.dumps(tool_result, indent=2, cls=DateTimeEncoder)
if tool_result
else None
)
final_log_data_for_file["output"]["correctness_reasoning"] = last_reasoning
final_log_data_for_file["score"] = last_is_correct # Ensure final score is set
# Generate a unique filename for the JSON output
unique_file_id = str(uuid.uuid4())
worker_id = os.environ.get(
"PYTEST_XDIST_WORKER", "main_thread"
) # Default if not in xdist
# Sanitize test_case_name for filename (take first 30 chars, replace spaces)
safe_test_name_part = (
test_case_name.replace(" ", "_").replace("/", "_").replace("\\", "_")[:30]
)
file_name = f"gql_test_idx_{sample_index}_{safe_test_name_part}_w_{worker_id}_attempt_{final_log_data_for_file['metadata']['final_attempt_number_for_json']}_{('pass' if final_log_data_for_file['score'] else 'fail')}_{unique_file_id}.json"
file_path = weave_results_dir / file_name
logger.critical(
f"WRITING JSON for GQL Test: {test_case_name} (Index: {sample_index}, Last Attempt: {final_log_data_for_file['metadata']['final_attempt_number_for_json']}, Score: {final_log_data_for_file['score']}) to {file_path}"
)
try:
with open(file_path, "w") as f:
json.dump(final_log_data_for_file, f, indent=2, cls=DateTimeEncoder)
logger.info(
f"Result for GQL test {test_case_name} (Latency: {execution_latency_seconds:.2f}s) written to {file_path}"
)
except Exception as e:
logger.error(
f"Failed to write result JSON for GQL test {test_case_name} to {file_path}: {e}"
)
# If we reach here and no exception was raised by pytest.fail or re-raised from the try block,
# it means the correctness check passed within the allowed attempts.
if not last_is_correct: # Final check if loop exited due to retries without success
pytest.fail(
f"LLM evaluation failed after {max_retries + 1} attempts for sample {sample_index}. "
f"Final is_correct_flag is `{last_is_correct}`. "
f"Final Reasoning: '{last_reasoning}'"
)
logger.info(
f"--- Test for sample {sample_index} ({test_case_name}) completed. Score: {last_is_correct} ---"
)
|