#!/usr/bin/env python """ Weights & Biases MCP Server - A Model Context Protocol server for querying Weights & Biases data. """ import io import json import logging import os import sys from pathlib import Path from typing import Any, Dict, List, Optional, Union import asyncio import signal import atexit import wandb from dotenv import load_dotenv from mcp.server.fastmcp import FastMCP from wandb_mcp_server.mcp_tools.list_wandb_entities_projects import ( LIST_ENTITY_PROJECTS_TOOL_DESCRIPTION, list_entity_projects, ) from wandb_mcp_server.mcp_tools.create_report import ( CREATE_WANDB_REPORT_TOOL_DESCRIPTION, create_report, ) from wandb_mcp_server.mcp_tools.count_traces import ( COUNT_WEAVE_TRACES_TOOL_DESCRIPTION, count_traces, ) from wandb_mcp_server.mcp_tools.query_wandb_gql import ( QUERY_WANDB_GQL_TOOL_DESCRIPTION, query_paginated_wandb_gql, ) from wandb_mcp_server.mcp_tools.query_wandbot import ( WANDBOT_TOOL_DESCRIPTION, query_wandbot_api, ) from wandb_mcp_server.mcp_tools.query_weave import ( QUERY_WEAVE_TRACES_TOOL_DESCRIPTION, query_paginated_weave_traces, ) from wandb_mcp_server.utils import get_rich_logger, get_server_args, ServerMCPArgs from wandb_mcp_server.weave_api.models import QueryResult print('Running server.py...', file=sys.stderr) # Silence logging to avoid interfering with MCP server os.environ["WANDB_SILENT"] = "True" os.environ["WEAVE_SILENT"] = "True" weave_logger = get_rich_logger("weave") weave_logger.setLevel(logging.ERROR) gql_transport_logger = get_rich_logger("gql.transport.requests") gql_transport_logger.setLevel(logging.ERROR) # Load environment variables load_dotenv(dotenv_path=Path(__file__).parent.parent.parent / ".env") # Configure logging logging.basicConfig(level=logging.INFO) # Sets root logger level and default handler logger = get_rich_logger( "weave-mcp-server", default_level_str="WARNING", env_var_name="MCP_SERVER_LOG_LEVEL" ) # Create an MCP server using FastMCP mcp = FastMCP("weave-mcp-server") # --------------- MCP TOOLS --------------- @mcp.tool(description=QUERY_WEAVE_TRACES_TOOL_DESCRIPTION) async def query_weave_traces_tool( entity_name: str, project_name: str, filters: Dict = {}, sort_by: str = "started_at", sort_direction: str = "desc", limit: int = 10000000, include_costs: bool = True, include_feedback: bool = True, columns: list = [], expand_columns: list = [], truncate_length: int = 200, return_full_data: bool = False, metadata_only: bool = False, ) -> str: try: # Use paginated query with chunks of 20 result_model: QueryResult = await query_paginated_weave_traces( entity_name=entity_name, project_name=project_name, chunk_size=50, filters=filters, sort_by=sort_by, sort_direction=sort_direction, target_limit=limit, include_costs=include_costs, include_feedback=include_feedback, columns=columns, expand_columns=expand_columns, truncate_length=truncate_length, return_full_data=return_full_data, metadata_only=metadata_only, ) json_output_string = result_model.model_dump_json() return json_output_string except Exception as e: logger.error(f"Error in query_weave_traces_tool: {e}", exc_info=True) raise e @mcp.tool(description=COUNT_WEAVE_TRACES_TOOL_DESCRIPTION) async def count_weave_traces_tool( entity_name: str, project_name: str, filters: Optional[Dict[str, Any]] = None ) -> str: try: # Call the synchronous count_traces function total_count = count_traces( entity_name=entity_name, project_name=project_name, filters=filters or {} ) # Create a copy of filters and ensure trace_roots_only is True root_filters = filters.copy() if filters else {} root_filters["trace_roots_only"] = True root_traces_count = count_traces( entity_name=entity_name, project_name=project_name, filters=root_filters, ) return json.dumps( {"total_count": total_count, "root_traces_count": root_traces_count} ) except Exception as e: logger.error(f"Error calling tool: {e}") return f"Error counting traces: {str(e)}" @mcp.tool(description=QUERY_WANDB_GQL_TOOL_DESCRIPTION) async def query_wandb_tool( query: str, variables: Optional[Dict[str, Any]] = None, max_items: int = 100, items_per_page: int = 20, ) -> Dict[str, Any]: gql_result = query_paginated_wandb_gql(query, variables, max_items, items_per_page) return gql_result @mcp.tool(description=CREATE_WANDB_REPORT_TOOL_DESCRIPTION) async def create_wandb_report_tool( entity_name: str, project_name: str, title: str, description: Optional[str] = None, markdown_report_text: str = "", plots_html: Optional[Union[Dict[str, str], str]] = None, ) -> str: try: result = create_report( entity_name=entity_name, project_name=project_name, title=title, description=description, markdown_report_text=markdown_report_text, plots_html=plots_html, ) # Build return message with processing details result_message = f"The report was saved here: {result['url']}" if result['processing_details']: result_message += "\n\nReport processing details:\n" + "\n".join(f"- {detail}" for detail in result['processing_details']) return result_message except Exception as e: # The create_report function now includes processing details in errors raise e @mcp.tool(description=LIST_ENTITY_PROJECTS_TOOL_DESCRIPTION) def query_wandb_entity_projects(entity: Optional[str] = None) -> Dict[str, List[Dict[str, Any]]]: return list_entity_projects(entity) @mcp.tool(description=WANDBOT_TOOL_DESCRIPTION) def query_wandb_support_bot(question: str) -> Dict[str, Any]: return query_wandbot_api(question) def cli(): """Command-line interface for starting the Weave MCP Server.""" # Parse command line arguments first import simple_parsing args = simple_parsing.parse(ServerMCPArgs) # Ensure WANDB_SILENT is set, and attempt to configure wandb for silent operation globally os.environ["WANDB_SILENT"] = "True" try: wandb.setup(settings=wandb.Settings(silent=True, console="off")) except Exception as e: logger.warning(f"Could not apply wandb.setup settings: {e}") # Attempt to explicitly login to W&B and suppress its stdout messages # This is to ensure login happens before mcp.run() and to capture login confirmations. api_key = args.wandb_api_key or get_server_args().wandb_api_key if api_key: original_stdout = sys.stdout original_stderr = sys.stderr sys.stdout = captured_stdout = io.StringIO() sys.stderr = captured_stderr = io.StringIO() try: logger.info("Attempting explicit W&B login in cli()...") wandb.login(key=api_key) login_msg_stdout = captured_stdout.getvalue().strip() login_msg_stderr = captured_stderr.getvalue().strip() if login_msg_stdout: logger.info(f"Suppressed stdout during W&B login: {login_msg_stdout}") if login_msg_stderr: logger.info(f"Suppressed stderr during W&B login: {login_msg_stderr}") logger.info("Explicit W&B login attempt finished.") except Exception as e: logger.error(f"Error during explicit W&B login: {e}") # Potentially re-raise or handle as a fatal error if login is critical finally: sys.stdout = original_stdout # Always restore stdout sys.stderr = original_stderr # Always restore stderr else: logger.warning( "WANDB_API_KEY not found via get_server_args(). Skipping explicit login." ) # Validate that we have the required API key (may be redundant if explicit login was attempted) if not api_key: raise ValueError( "WANDB_API_KEY must be set either as an environment variable, in .env file, or as a command-line argument" ) logger.info("Starting Weights & Biases MCP Server.") logger.info( f"API Key configured: {'Yes' if api_key else 'No'}" ) # Validate transport type if args.transport not in ["stdio", "http"]: raise ValueError(f"Invalid transport type: {args.transport}. Must be 'stdio' or 'http'") # Determine transport configuration if args.transport == "http": # Set default port if not specified port = args.port if args.port is not None else 8080 logger.info(f"Starting HTTP server on {args.host}:{port}") # Create new FastMCP instance with HTTP configuration http_mcp = FastMCP("weave-mcp-server", host=args.host, port=port, stateless_http=True) # Copy all tools from the original mcp instance # We need to re-register the tools on the new instance logger.info("Registering tools for HTTP transport...") # Re-register all tools @http_mcp.tool(description=QUERY_WEAVE_TRACES_TOOL_DESCRIPTION) async def query_weave_traces_tool_http( entity_name: str, project_name: str, filters: Dict = {}, sort_by: str = "started_at", sort_direction: str = "desc", limit: int = 10000000, include_costs: bool = True, include_feedback: bool = True, columns: list = [], expand_columns: list = [], truncate_length: int = 200, return_full_data: bool = False, metadata_only: bool = False, ) -> str: return await query_weave_traces_tool( entity_name, project_name, filters, sort_by, sort_direction, limit, include_costs, include_feedback, columns, expand_columns, truncate_length, return_full_data, metadata_only ) @http_mcp.tool(description=COUNT_WEAVE_TRACES_TOOL_DESCRIPTION) async def count_weave_traces_tool_http( entity_name: str, project_name: str, filters: Optional[Dict[str, Any]] = None ) -> str: return await count_weave_traces_tool(entity_name, project_name, filters) @http_mcp.tool(description=QUERY_WANDB_GQL_TOOL_DESCRIPTION) async def query_wandb_tool_http( query: str, variables: Optional[Dict[str, Any]] = None, max_items: int = 100, items_per_page: int = 20, ) -> Dict[str, Any]: return await query_wandb_tool(query, variables, max_items, items_per_page) @http_mcp.tool(description=CREATE_WANDB_REPORT_TOOL_DESCRIPTION) async def create_wandb_report_tool_http( entity_name: str, project_name: str, title: str, description: Optional[str] = None, markdown_report_text: str = "", plots_html: Optional[Union[Dict[str, str], str]] = None, ) -> str: return await create_wandb_report_tool( entity_name, project_name, title, description, markdown_report_text, plots_html ) @http_mcp.tool(description=LIST_ENTITY_PROJECTS_TOOL_DESCRIPTION) def query_wandb_entity_projects_http(entity: Optional[str] = None) -> Dict[str, List[Dict[str, Any]]]: return query_wandb_entity_projects(entity) @http_mcp.tool(description=WANDBOT_TOOL_DESCRIPTION) def query_wandb_support_bot_http(question: str) -> Dict[str, Any]: return query_wandb_support_bot(question) # Run with streamable HTTP transport http_mcp.run(transport="streamable-http") else: logger.info("Starting server with stdio transport") mcp.run(transport="stdio") if __name__ == "__main__": cli()