#!/usr/bin/env python """ Weights & Biases MCP Server - A Model Context Protocol server for querying Weights & Biases data. This server provides tools for: - Querying Weave traces and evaluations - Counting traces efficiently - Executing GraphQL queries against W&B experiment data - Creating shareable reports with visualizations - Getting help via wandbot support agent - Discovering available entities and projects """ import io import json import logging import os import sys from pathlib import Path from typing import Any, Dict, List, Optional, Union import wandb from dotenv import load_dotenv from mcp.server.fastmcp import FastMCP # Import Weave for tracing MCP tool calls try: import weave WEAVE_AVAILABLE = True except ImportError: weave = None WEAVE_AVAILABLE = False from wandb_mcp_server.mcp_tools.list_wandb_entities_projects import ( LIST_ENTITY_PROJECTS_TOOL_DESCRIPTION, list_entity_projects, ) from wandb_mcp_server.mcp_tools.create_report import ( CREATE_WANDB_REPORT_TOOL_DESCRIPTION, create_report, ) from wandb_mcp_server.mcp_tools.count_traces import ( COUNT_WEAVE_TRACES_TOOL_DESCRIPTION, count_traces, ) from wandb_mcp_server.mcp_tools.query_wandb_gql import ( QUERY_WANDB_GQL_TOOL_DESCRIPTION, query_paginated_wandb_gql, ) from wandb_mcp_server.mcp_tools.query_wandbot import ( WANDBOT_TOOL_DESCRIPTION, query_wandbot_api, ) from wandb_mcp_server.mcp_tools.query_weave import ( QUERY_WEAVE_TRACES_TOOL_DESCRIPTION, query_paginated_weave_traces, ) from wandb_mcp_server.utils import get_rich_logger, get_server_args, ServerMCPArgs # Export key functions for HF Spaces app __all__ = [ 'validate_and_get_api_key', 'validate_api_key', 'configure_wandb_logging', 'initialize_weave_tracing', 'create_mcp_server', 'register_tools', 'ServerMCPArgs', 'cli' ] from wandb_mcp_server.weave_api.models import QueryResult print('Starting W&B MCP Server...', file=sys.stderr) # Load environment variables load_dotenv(dotenv_path=Path(__file__).parent.parent.parent / ".env") # Configure logging logging.basicConfig(level=logging.INFO) logger = get_rich_logger( "weave-mcp-server", default_level_str="WARNING", env_var_name="MCP_SERVER_LOG_LEVEL" ) # =============================================================================== # SECTION 1: W&B AUTHENTICATION & API KEY SETUP # =============================================================================== def validate_api_key(api_key: str) -> bool: """ Validate a W&B API key by attempting to use it. Args: api_key: The W&B API key to validate Returns: True if the API key is valid, False otherwise """ try: # Try to create an API instance and fetch the viewer # This validates the key without setting any global state api = wandb.Api(api_key=api_key) _ = api.viewer # This will fail if the key is invalid logger.info("W&B API key validated successfully.") return True except Exception as e: logger.error(f"Invalid W&B API key: {e}") return False def validate_and_get_api_key(args: ServerMCPArgs) -> Optional[str]: """ Validate and retrieve the W&B API key from various sources. For HTTP transport: API key is optional (clients provide their own) For STDIO transport: API key is required from environment Priority order: 1. Command-line argument (--wandb-api-key) 2. Environment variable (WANDB_API_KEY) 3. .netrc file 4. .env file Args: args: Parsed command-line arguments Returns: The W&B API key if found, None otherwise Raises: ValueError: If no API key is found for STDIO transport """ api_key = args.wandb_api_key or get_server_args().wandb_api_key # For HTTP transport, API key is optional (clients provide their own) if args.transport == "http": if api_key: logger.info("Server W&B API key configured (for server operations)") else: logger.info("No server W&B API key configured (clients will provide their own)") return api_key # For STDIO transport, API key is required if not api_key: raise ValueError( "WANDB_API_KEY must be set for STDIO transport. Options:\n" "1. Command-line: --wandb-api-key YOUR_KEY\n" "2. Environment: export WANDB_API_KEY=YOUR_KEY\n" "3. .env file: WANDB_API_KEY=YOUR_KEY\n" "4. .netrc file: machine api.wandb.ai login user password YOUR_KEY\n" "\nGet your API key at: https://wandb.ai/authorize" ) return api_key # =============================================================================== # SECTION 2: W&B LOGGING CONFIGURATION # =============================================================================== def configure_wandb_logging() -> None: """ Configure W&B and Weave logging behavior to avoid interference with MCP protocol. (because Weave outputs created or fetched traces) Environment variables that control logging: - WANDB_SILENT: Set to "True" to suppress all W&B output (default: True) - WEAVE_SILENT: Set to "True" to suppress all Weave output (default: True) - MCP_SERVER_LOG_LEVEL: Set server log level (DEBUG, INFO, WARNING, ERROR) - WANDB_CONSOLE: Set to "off" to disable console output (default: off) """ # Ensure W&B operates silently by default to not interfere with MCP protocol os.environ.setdefault("WANDB_SILENT", "True") os.environ.setdefault("WEAVE_SILENT", "True") # Configure W&B to suppress console output try: wandb.setup(settings=wandb.Settings(silent=True, console="off")) logger.debug("W&B configured for silent operation") except Exception as e: logger.warning(f"Could not apply wandb.setup settings: {e}") # Silence specific loggers that might interfere with MCP weave_logger = get_rich_logger("weave") weave_logger.setLevel(logging.ERROR) gql_transport_logger = get_rich_logger("gql.transport.requests") gql_transport_logger.setLevel(logging.ERROR) # Allow users to enable more verbose W&B logging if needed for debugging if os.environ.get("WANDB_DEBUG", "").lower() == "true": logger.info("W&B debug logging enabled via WANDB_DEBUG=true") os.environ["WANDB_SILENT"] = "False" wandb_logger = get_rich_logger("wandb") wandb_logger.setLevel(logging.DEBUG) def initialize_weave_tracing() -> bool: """ Initialize Weave tracing for MCP operations using the official FastMCP integration. According to https://weave-docs.wandb.ai/guides/integrations/mcp, Weave automatically traces FastMCP operations (tools, resources, prompts) when weave.init() is called. Returns: True if Weave was successfully initialized, False otherwise """ if not WEAVE_AVAILABLE: logger.debug("Weave not available - MCP operations will not be traced") return False # Check if Weave tracing is disabled if os.environ.get("WEAVE_DISABLED", "true").lower() == "true": logger.debug("Weave tracing disabled via WEAVE_DISABLED=true") return False # Get Weave project configuration entity = os.environ.get("MCP_LOGS_WANDB_ENTITY") or os.environ.get("WANDB_ENTITY") project = os.environ.get("MCP_LOGS_WANDB_PROJECT", "wandb-mcp-logs") if not entity: logger.debug("No WANDB_ENTITY or MCP_LOGS_WANDB_ENTITY set - MCP operations will not be traced to Weave") return False try: weave_project = f"{entity}/{project}" logger.info(f"Initializing Weave tracing for MCP operations: {weave_project}") # Set optional MCP configuration for list operations tracing if os.environ.get("MCP_TRACE_LIST_OPERATIONS", "").lower() == "true": os.environ["MCP_TRACE_LIST_OPERATIONS"] = "true" logger.info("MCP list operations tracing enabled") # Initialize Weave - this automatically enables tracing for FastMCP operations weave.init(weave_project) logger.info("Weave tracing initialized - FastMCP operations will be automatically traced") return True except Exception as e: logger.error(f"Failed to initialize Weave tracing: {e}") return False # =============================================================================== # SECTION 3: MCP TOOL REGISTRATION # =============================================================================== def register_tools(mcp_instance: FastMCP) -> None: """ Register all W&B MCP tools on the given FastMCP instance. Available tools: - query_weave_traces_tool: Query LLM traces with filtering and pagination - count_weave_traces_tool: Efficiently count traces without returning data - query_wandb_tool: Execute GraphQL queries against W&B experiment data - create_wandb_report_tool: Create shareable reports with visualizations - query_wandb_entity_projects: List available entities and projects - query_wandb_support_bot: Get help via wandbot RAG-powered support Args: mcp_instance: The FastMCP instance to register tools on """ @mcp_instance.tool(description=QUERY_WEAVE_TRACES_TOOL_DESCRIPTION) async def query_weave_traces_tool( entity_name: str, project_name: str, filters: Dict[str, Any] = {}, sort_by: str = "started_at", sort_direction: str = "desc", limit: int = 10000000, include_costs: bool = True, include_feedback: bool = True, columns: List[str] = [], expand_columns: List[str] = [], truncate_length: int = 200, return_full_data: bool = False, metadata_only: bool = False, ) -> str: try: result_model: QueryResult = await query_paginated_weave_traces( entity_name=entity_name, project_name=project_name, chunk_size=50, filters=filters, sort_by=sort_by, sort_direction=sort_direction, target_limit=limit, include_costs=include_costs, include_feedback=include_feedback, columns=columns, expand_columns=expand_columns, truncate_length=truncate_length, return_full_data=return_full_data, metadata_only=metadata_only, ) return result_model.model_dump_json() except Exception as e: logger.error(f"Error in query_weave_traces_tool: {e}", exc_info=True) raise e @mcp_instance.tool(description=COUNT_WEAVE_TRACES_TOOL_DESCRIPTION) async def count_weave_traces_tool( entity_name: str, project_name: str, filters: Optional[Dict[str, Any]] = None ) -> str: try: total_count = count_traces( entity_name=entity_name, project_name=project_name, filters=filters or {} ) # Also count root traces for better understanding of project scope root_filters = filters.copy() if filters else {} root_filters["trace_roots_only"] = True root_traces_count = count_traces( entity_name=entity_name, project_name=project_name, filters=root_filters, ) return json.dumps( {"total_count": total_count, "root_traces_count": root_traces_count} ) except Exception as e: logger.error(f"Error in count_weave_traces_tool: {e}") return f"Error counting traces: {str(e)}" @mcp_instance.tool(description=QUERY_WANDB_GQL_TOOL_DESCRIPTION) async def query_wandb_tool( query: str, variables: Optional[Dict[str, Any]] = None, max_items: int = 100, items_per_page: int = 20, ) -> Dict[str, Any]: return query_paginated_wandb_gql(query, variables, max_items, items_per_page) @mcp_instance.tool(description=CREATE_WANDB_REPORT_TOOL_DESCRIPTION) async def create_wandb_report_tool( entity_name: str, project_name: str, title: str, description: Optional[str] = None, markdown_report_text: str = "", plots_html: Optional[Union[Dict[str, str], str]] = None, ) -> str: try: result = create_report( entity_name=entity_name, project_name=project_name, title=title, description=description, markdown_report_text=markdown_report_text, plots_html=plots_html, ) # Build return message with processing details result_message = f"The report was saved here: {result['url']}" if result['processing_details']: result_message += "\n\nReport processing details:\n" + "\n".join(f"- {detail}" for detail in result['processing_details']) return result_message except Exception as e: raise e @mcp_instance.tool(description=LIST_ENTITY_PROJECTS_TOOL_DESCRIPTION) def query_wandb_entity_projects(entity: Optional[str] = None) -> Dict[str, List[Dict[str, Any]]]: return list_entity_projects(entity) @mcp_instance.tool(description=WANDBOT_TOOL_DESCRIPTION) def query_wandb_support_bot(question: str) -> Dict[str, Any]: return query_wandbot_api(question) # =============================================================================== # SECTION 4: MCP SERVER SETUP (STDIO & HTTP) # =============================================================================== def create_mcp_server(transport: str, host: str = "localhost", port: Optional[int] = None) -> FastMCP: """ Create and configure a FastMCP server for the specified transport. Args: transport: Transport type ("stdio" or "http") host: Host for HTTP transport (default: "localhost") port: Port for HTTP transport (default: 8080) Returns: Configured FastMCP instance with all tools registered Raises: ValueError: If transport type is invalid Authentication: - STDIO transport: Uses environment variables (WANDB_API_KEY required) - HTTP transport: Clients provide W&B API key as Bearer token Set MCP_AUTH_DISABLED=true to disable auth (development only) """ if transport == "http": port = port if port is not None else 8080 logger.info(f"Configuring HTTP server on {host}:{port}") mcp = FastMCP("weave-mcp-server", host=host, port=port, stateless_http=True) # Log authentication status for HTTP if os.environ.get("MCP_AUTH_DISABLED", "false").lower() == "true": logger.warning("⚠️ MCP authentication is DISABLED - server is publicly accessible") else: logger.info("🔒 MCP authentication enabled - clients must provide W&B API key as Bearer token") elif transport == "stdio": logger.info("Configuring stdio server") mcp = FastMCP("weave-mcp-server") logger.info("STDIO transport uses environment variable authentication") else: raise ValueError(f"Invalid transport type: {transport}. Must be 'stdio' or 'http'") # Register all tools register_tools(mcp) return mcp # =============================================================================== # SECTION 5: MAIN CLI ENTRY POINT # =============================================================================== def cli(): """ Main command-line interface for starting the Weights & Biases MCP Server. Usage: wandb_mcp_server [OPTIONS] Options: --transport {stdio,http} Transport type (default: stdio) --host HOST Host for HTTP transport (default: localhost) --port PORT Port for HTTP transport (default: 8080) --wandb-api-key KEY W&B API key (can also use env var) Environment Variables: WANDB_API_KEY W&B API key (required for STDIO, optional for HTTP) MCP_SERVER_LOG_LEVEL Server log level (DEBUG, INFO, WARNING, ERROR) WANDB_SILENT Set to "False" to enable W&B output (default: True) WEAVE_SILENT Set to "False" to enable Weave output (default: True) WANDB_DEBUG Set to "true" to enable W&B debug logging MCP_AUTH_DISABLED Set to "true" to disable HTTP auth (dev only) """ # Parse command line arguments import simple_parsing args = simple_parsing.parse(ServerMCPArgs) # Configure W&B logging behavior configure_wandb_logging() # Validate and get API key api_key = validate_and_get_api_key(args) # Validate API key if we have one (but don't set global state) if api_key: validate_api_key(api_key) # Initialize Weave tracing for MCP tool calls weave_initialized = initialize_weave_tracing() logger.info("Starting Weights & Biases MCP Server") logger.info(f"Transport: {args.transport}") logger.info(f"API Key configured: Yes") # Validate transport type if args.transport not in ["stdio", "http"]: raise ValueError(f"Invalid transport type: {args.transport}. Must be 'stdio' or 'http'") # Create and run the MCP server server = create_mcp_server(args.transport, args.host, args.port) if args.transport == "http": logger.info(f"Starting HTTP server on {args.host}:{args.port or 8080}") server.run(transport="streamable-http") else: logger.info("Starting stdio server") server.run(transport="stdio") if __name__ == "__main__": cli()