Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	lets see
Browse files
    	
        app.py
    CHANGED
    
    | @@ -9,10 +9,8 @@ from diffusers.utils import numpy_to_pil | |
| 9 | 
             
            from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
         | 
| 10 | 
             
            from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
         | 
| 11 | 
             
            from previewer.modules import Previewer
         | 
| 12 | 
            -
            from compel import Compel
         | 
| 13 | 
             
            os.environ['TOKENIZERS_PARALLELISM'] = 'false'
         | 
| 14 |  | 
| 15 | 
            -
             | 
| 16 | 
             
            DESCRIPTION = "# Würstchen"
         | 
| 17 | 
             
            DESCRIPTION += "\n<p style=\"text-align: center\"><a href='https://huggingface.co/warp-ai/wuerstchen' target='_blank'>Würstchen</a> is a new fast and efficient high resolution text-to-image architecture and model</p>"
         | 
| 18 | 
             
            if not torch.cuda.is_available():
         | 
| @@ -53,7 +51,6 @@ if torch.cuda.is_available(): | |
| 53 | 
             
                else:
         | 
| 54 | 
             
                    previewer = None
         | 
| 55 | 
             
                    callback_prior = None
         | 
| 56 | 
            -
                compel_proc = Compel(tokenizer=prior_pipeline.tokenizer, text_encoder=prior_pipeline.text_encoder)
         | 
| 57 | 
             
            else:
         | 
| 58 | 
             
                prior_pipeline = None
         | 
| 59 | 
             
                decoder_pipeline = None
         | 
| @@ -81,16 +78,12 @@ def generate( | |
| 81 | 
             
            ) -> PIL.Image.Image:
         | 
| 82 | 
             
                generator = torch.Generator().manual_seed(seed)
         | 
| 83 |  | 
| 84 | 
            -
                print("Running compel")
         | 
| 85 | 
            -
                prompt_embeds = compel_proc(prompt)
         | 
| 86 | 
            -
                negative_prompt_embeds = compel_proc(negative_prompt)
         | 
| 87 | 
            -
             | 
| 88 | 
             
                prior_output = prior_pipeline(
         | 
| 89 | 
            -
                     | 
| 90 | 
             
                    height=height,
         | 
| 91 | 
             
                    width=width,
         | 
| 92 | 
             
                    timesteps=DEFAULT_STAGE_C_TIMESTEPS,
         | 
| 93 | 
            -
                     | 
| 94 | 
             
                    guidance_scale=prior_guidance_scale,
         | 
| 95 | 
             
                    num_images_per_prompt=num_images_per_prompt,
         | 
| 96 | 
             
                    generator=generator,
         | 
| @@ -202,8 +195,8 @@ with gr.Blocks(css="style.css") as demo: | |
| 202 | 
             
                        )
         | 
| 203 | 
             
                        decoder_num_inference_steps = gr.Slider(
         | 
| 204 | 
             
                            label="Decoder Inference Steps",
         | 
| 205 | 
            -
                            minimum= | 
| 206 | 
            -
                            maximum= | 
| 207 | 
             
                            step=1,
         | 
| 208 | 
             
                            value=12,
         | 
| 209 | 
             
                        )
         | 
|  | |
| 9 | 
             
            from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
         | 
| 10 | 
             
            from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
         | 
| 11 | 
             
            from previewer.modules import Previewer
         | 
|  | |
| 12 | 
             
            os.environ['TOKENIZERS_PARALLELISM'] = 'false'
         | 
| 13 |  | 
|  | |
| 14 | 
             
            DESCRIPTION = "# Würstchen"
         | 
| 15 | 
             
            DESCRIPTION += "\n<p style=\"text-align: center\"><a href='https://huggingface.co/warp-ai/wuerstchen' target='_blank'>Würstchen</a> is a new fast and efficient high resolution text-to-image architecture and model</p>"
         | 
| 16 | 
             
            if not torch.cuda.is_available():
         | 
|  | |
| 51 | 
             
                else:
         | 
| 52 | 
             
                    previewer = None
         | 
| 53 | 
             
                    callback_prior = None
         | 
|  | |
| 54 | 
             
            else:
         | 
| 55 | 
             
                prior_pipeline = None
         | 
| 56 | 
             
                decoder_pipeline = None
         | 
|  | |
| 78 | 
             
            ) -> PIL.Image.Image:
         | 
| 79 | 
             
                generator = torch.Generator().manual_seed(seed)
         | 
| 80 |  | 
|  | |
|  | |
|  | |
|  | |
| 81 | 
             
                prior_output = prior_pipeline(
         | 
| 82 | 
            +
                    prompt=prompt,
         | 
| 83 | 
             
                    height=height,
         | 
| 84 | 
             
                    width=width,
         | 
| 85 | 
             
                    timesteps=DEFAULT_STAGE_C_TIMESTEPS,
         | 
| 86 | 
            +
                    negative_prompt=negative_prompt,
         | 
| 87 | 
             
                    guidance_scale=prior_guidance_scale,
         | 
| 88 | 
             
                    num_images_per_prompt=num_images_per_prompt,
         | 
| 89 | 
             
                    generator=generator,
         | 
|  | |
| 195 | 
             
                        )
         | 
| 196 | 
             
                        decoder_num_inference_steps = gr.Slider(
         | 
| 197 | 
             
                            label="Decoder Inference Steps",
         | 
| 198 | 
            +
                            minimum=4,
         | 
| 199 | 
            +
                            maximum=12,
         | 
| 200 | 
             
                            step=1,
         | 
| 201 | 
             
                            value=12,
         | 
| 202 | 
             
                        )
         | 

