Spaces:
Runtime error
Runtime error
upload files
Browse files- app.py +263 -0
- previewer/modules.py +36 -0
- previewer/text2img_wurstchen_b_v1_previewer_100k.pt +3 -0
app.py
ADDED
|
@@ -0,0 +1,263 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import PIL.Image
|
| 6 |
+
import torch
|
| 7 |
+
from typing import List
|
| 8 |
+
from diffusers.utils import numpy_to_pil
|
| 9 |
+
from diffusers import WuerstchenDecoderPipeline, WuerstchenPriorPipeline
|
| 10 |
+
from diffusers.pipelines.wuerstchen import WuerstchenPrior, default_stage_c_timesteps
|
| 11 |
+
from previewer.modules import Previewer
|
| 12 |
+
|
| 13 |
+
DESCRIPTION = "# Würstchen"
|
| 14 |
+
if not torch.cuda.is_available():
|
| 15 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 16 |
+
|
| 17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 18 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1"
|
| 19 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
| 20 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
| 21 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
| 22 |
+
PREVIEW_IMAGES = True
|
| 23 |
+
|
| 24 |
+
dtype = torch.float16
|
| 25 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 26 |
+
if torch.cuda.is_available():
|
| 27 |
+
prior_pipeline = WuerstchenPriorPipeline.from_pretrained("warp-ai/wuerstchen-prior", torch_dtype=dtype)
|
| 28 |
+
decoder_pipeline = WuerstchenDecoderPipeline.from_pretrained("warp-ai/wuerstchen", torch_dtype=dtype)
|
| 29 |
+
if ENABLE_CPU_OFFLOAD:
|
| 30 |
+
prior_pipeline.enable_model_cpu_offload()
|
| 31 |
+
decoder_pipeline.enable_model_cpu_offload()
|
| 32 |
+
else:
|
| 33 |
+
prior_pipeline.to(device)
|
| 34 |
+
decoder_pipeline.to(device)
|
| 35 |
+
|
| 36 |
+
if USE_TORCH_COMPILE:
|
| 37 |
+
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
|
| 38 |
+
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="reduce-overhead", fullgraph=True)
|
| 39 |
+
|
| 40 |
+
if PREVIEW_IMAGES:
|
| 41 |
+
previewer = Previewer()
|
| 42 |
+
previewer.load_state_dict(torch.load(r"C:\Users\d6582\Documents\ml\wuerstchen\diffusers\previewer\text2img_wurstchen_b_v1_previewer_100k.pt")["state_dict"])
|
| 43 |
+
previewer.eval().requires_grad_(False).to(device).to(dtype)
|
| 44 |
+
|
| 45 |
+
def callback_prior(i, t, latents):
|
| 46 |
+
output = previewer(latents)
|
| 47 |
+
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).cpu().numpy())
|
| 48 |
+
return output
|
| 49 |
+
else:
|
| 50 |
+
previewer = None
|
| 51 |
+
callback_prior = None
|
| 52 |
+
else:
|
| 53 |
+
prior_pipeline = None
|
| 54 |
+
decoder_pipeline = None
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 58 |
+
if randomize_seed:
|
| 59 |
+
seed = random.randint(0, MAX_SEED)
|
| 60 |
+
return seed
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def generate(
|
| 64 |
+
prompt: str,
|
| 65 |
+
negative_prompt: str = "",
|
| 66 |
+
seed: int = 0,
|
| 67 |
+
width: int = 1024,
|
| 68 |
+
height: int = 1024,
|
| 69 |
+
prior_num_inference_steps: int = 60,
|
| 70 |
+
# prior_timesteps: List[float] = None,
|
| 71 |
+
prior_guidance_scale: float = 4.0,
|
| 72 |
+
decoder_num_inference_steps: int = 12,
|
| 73 |
+
# decoder_timesteps: List[float] = None,
|
| 74 |
+
decoder_guidance_scale: float = 0.0,
|
| 75 |
+
num_images_per_prompt: int = 2,
|
| 76 |
+
) -> PIL.Image.Image:
|
| 77 |
+
generator = torch.Generator().manual_seed(seed)
|
| 78 |
+
|
| 79 |
+
prior_output = prior_pipeline(
|
| 80 |
+
prompt=prompt,
|
| 81 |
+
height=height,
|
| 82 |
+
width=width,
|
| 83 |
+
timesteps=default_stage_c_timesteps,
|
| 84 |
+
negative_prompt=negative_prompt,
|
| 85 |
+
guidance_scale=prior_guidance_scale,
|
| 86 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 87 |
+
generator=generator,
|
| 88 |
+
callback=callback_prior,
|
| 89 |
+
)
|
| 90 |
+
|
| 91 |
+
if PREVIEW_IMAGES:
|
| 92 |
+
for _ in range(len(default_stage_c_timesteps)):
|
| 93 |
+
r = next(prior_output)
|
| 94 |
+
if isinstance(r, list):
|
| 95 |
+
yield r
|
| 96 |
+
prior_output = r
|
| 97 |
+
|
| 98 |
+
decoder_output = decoder_pipeline(
|
| 99 |
+
image_embeddings=prior_output.image_embeddings,
|
| 100 |
+
prompt=prompt,
|
| 101 |
+
num_inference_steps=decoder_num_inference_steps,
|
| 102 |
+
# timesteps=decoder_timesteps,
|
| 103 |
+
guidance_scale=decoder_guidance_scale,
|
| 104 |
+
negative_prompt=negative_prompt,
|
| 105 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 106 |
+
generator=generator,
|
| 107 |
+
output_type="pil",
|
| 108 |
+
).images
|
| 109 |
+
yield decoder_output
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
examples = [
|
| 113 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 114 |
+
"An astronaut riding a green horse",
|
| 115 |
+
]
|
| 116 |
+
|
| 117 |
+
with gr.Blocks(css="style.css") as demo:
|
| 118 |
+
gr.Markdown(DESCRIPTION)
|
| 119 |
+
gr.DuplicateButton(
|
| 120 |
+
value="Duplicate Space for private use",
|
| 121 |
+
elem_id="duplicate-button",
|
| 122 |
+
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
|
| 123 |
+
)
|
| 124 |
+
with gr.Group():
|
| 125 |
+
with gr.Row():
|
| 126 |
+
prompt = gr.Text(
|
| 127 |
+
label="Prompt",
|
| 128 |
+
show_label=False,
|
| 129 |
+
max_lines=1,
|
| 130 |
+
placeholder="Enter your prompt",
|
| 131 |
+
container=False,
|
| 132 |
+
)
|
| 133 |
+
run_button = gr.Button("Run", scale=0)
|
| 134 |
+
result = gr.Gallery(label="Result", show_label=False)
|
| 135 |
+
with gr.Accordion("Advanced options", open=False):
|
| 136 |
+
negative_prompt = gr.Text(
|
| 137 |
+
label="Negative prompt",
|
| 138 |
+
max_lines=1,
|
| 139 |
+
placeholder="Enter a Negative Prompt",
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
seed = gr.Slider(
|
| 143 |
+
label="Seed",
|
| 144 |
+
minimum=0,
|
| 145 |
+
maximum=MAX_SEED,
|
| 146 |
+
step=1,
|
| 147 |
+
value=0,
|
| 148 |
+
)
|
| 149 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 150 |
+
with gr.Row():
|
| 151 |
+
width = gr.Slider(
|
| 152 |
+
label="Width",
|
| 153 |
+
minimum=768,
|
| 154 |
+
maximum=MAX_IMAGE_SIZE,
|
| 155 |
+
step=128,
|
| 156 |
+
value=1024,
|
| 157 |
+
)
|
| 158 |
+
height = gr.Slider(
|
| 159 |
+
label="Height",
|
| 160 |
+
minimum=768,
|
| 161 |
+
maximum=MAX_IMAGE_SIZE,
|
| 162 |
+
step=128,
|
| 163 |
+
value=1024,
|
| 164 |
+
)
|
| 165 |
+
num_images_per_prompt = gr.Slider(
|
| 166 |
+
label="Number of Images",
|
| 167 |
+
minimum=1,
|
| 168 |
+
maximum=6,
|
| 169 |
+
step=1,
|
| 170 |
+
value=2,
|
| 171 |
+
)
|
| 172 |
+
with gr.Row():
|
| 173 |
+
prior_guidance_scale = gr.Slider(
|
| 174 |
+
label="Prior Guidance Scale",
|
| 175 |
+
minimum=1,
|
| 176 |
+
maximum=20,
|
| 177 |
+
step=0.1,
|
| 178 |
+
value=4.0,
|
| 179 |
+
)
|
| 180 |
+
prior_num_inference_steps = gr.Slider(
|
| 181 |
+
label="Prior Inference Steps",
|
| 182 |
+
minimum=10,
|
| 183 |
+
maximum=100,
|
| 184 |
+
step=1,
|
| 185 |
+
value=60,
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
decoder_guidance_scale = gr.Slider(
|
| 189 |
+
label="Decoder Guidance Scale",
|
| 190 |
+
minimum=1,
|
| 191 |
+
maximum=20,
|
| 192 |
+
step=0.1,
|
| 193 |
+
value=0.0,
|
| 194 |
+
)
|
| 195 |
+
decoder_num_inference_steps = gr.Slider(
|
| 196 |
+
label="Decoder Inference Steps",
|
| 197 |
+
minimum=10,
|
| 198 |
+
maximum=100,
|
| 199 |
+
step=1,
|
| 200 |
+
value=12,
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
gr.Examples(
|
| 204 |
+
examples=examples,
|
| 205 |
+
inputs=prompt,
|
| 206 |
+
outputs=result,
|
| 207 |
+
fn=generate,
|
| 208 |
+
cache_examples=CACHE_EXAMPLES,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
inputs = [
|
| 212 |
+
prompt,
|
| 213 |
+
negative_prompt,
|
| 214 |
+
seed,
|
| 215 |
+
width,
|
| 216 |
+
height,
|
| 217 |
+
prior_num_inference_steps,
|
| 218 |
+
# prior_timesteps,
|
| 219 |
+
prior_guidance_scale,
|
| 220 |
+
decoder_num_inference_steps,
|
| 221 |
+
# decoder_timesteps,
|
| 222 |
+
decoder_guidance_scale,
|
| 223 |
+
num_images_per_prompt,
|
| 224 |
+
]
|
| 225 |
+
prompt.submit(
|
| 226 |
+
fn=randomize_seed_fn,
|
| 227 |
+
inputs=[seed, randomize_seed],
|
| 228 |
+
outputs=seed,
|
| 229 |
+
queue=False,
|
| 230 |
+
api_name=False,
|
| 231 |
+
).then(
|
| 232 |
+
fn=generate,
|
| 233 |
+
inputs=inputs,
|
| 234 |
+
outputs=result,
|
| 235 |
+
api_name="run",
|
| 236 |
+
)
|
| 237 |
+
negative_prompt.submit(
|
| 238 |
+
fn=randomize_seed_fn,
|
| 239 |
+
inputs=[seed, randomize_seed],
|
| 240 |
+
outputs=seed,
|
| 241 |
+
queue=False,
|
| 242 |
+
api_name=False,
|
| 243 |
+
).then(
|
| 244 |
+
fn=generate,
|
| 245 |
+
inputs=inputs,
|
| 246 |
+
outputs=result,
|
| 247 |
+
api_name=False,
|
| 248 |
+
)
|
| 249 |
+
run_button.click(
|
| 250 |
+
fn=randomize_seed_fn,
|
| 251 |
+
inputs=[seed, randomize_seed],
|
| 252 |
+
outputs=seed,
|
| 253 |
+
queue=False,
|
| 254 |
+
api_name=False,
|
| 255 |
+
).then(
|
| 256 |
+
fn=generate,
|
| 257 |
+
inputs=inputs,
|
| 258 |
+
outputs=result,
|
| 259 |
+
api_name=False,
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
if __name__ == "__main__":
|
| 263 |
+
demo.queue(max_size=20).launch()
|
previewer/modules.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn
|
| 2 |
+
|
| 3 |
+
# Effnet 16x16 to 64x64 previewer
|
| 4 |
+
class Previewer(nn.Module):
|
| 5 |
+
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
| 6 |
+
super().__init__()
|
| 7 |
+
self.blocks = nn.Sequential(
|
| 8 |
+
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 36 channels to 512 channels
|
| 9 |
+
nn.GELU(),
|
| 10 |
+
nn.BatchNorm2d(c_hidden),
|
| 11 |
+
|
| 12 |
+
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
| 13 |
+
nn.GELU(),
|
| 14 |
+
nn.BatchNorm2d(c_hidden),
|
| 15 |
+
|
| 16 |
+
nn.ConvTranspose2d(c_hidden, c_hidden//2, kernel_size=2, stride=2), # 16 -> 32
|
| 17 |
+
nn.GELU(),
|
| 18 |
+
nn.BatchNorm2d(c_hidden//2),
|
| 19 |
+
|
| 20 |
+
nn.Conv2d(c_hidden//2, c_hidden//2, kernel_size=3, padding=1),
|
| 21 |
+
nn.GELU(),
|
| 22 |
+
nn.BatchNorm2d(c_hidden//2),
|
| 23 |
+
|
| 24 |
+
nn.ConvTranspose2d(c_hidden//2, c_hidden//4, kernel_size=2, stride=2), # 32 -> 64
|
| 25 |
+
nn.GELU(),
|
| 26 |
+
nn.BatchNorm2d(c_hidden//4),
|
| 27 |
+
|
| 28 |
+
nn.Conv2d(c_hidden//4, c_hidden//4, kernel_size=3, padding=1),
|
| 29 |
+
nn.GELU(),
|
| 30 |
+
nn.BatchNorm2d(c_hidden//4),
|
| 31 |
+
|
| 32 |
+
nn.Conv2d(c_hidden//4, c_out, kernel_size=1),
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
return self.blocks(x)
|
previewer/text2img_wurstchen_b_v1_previewer_100k.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:76e82483253b24430b20e3e0c98ec2f9aeb45f0b487f7b330bac044b5de0d6f7
|
| 3 |
+
size 45244773
|