File size: 18,048 Bytes
bff3709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
import base64
import io
import json
import os
from typing import Dict, List, Tuple, Any, Optional

import requests
from PIL import Image
import gradio as gr
# =========================
# Config
# =========================
DEFAULT_API_URL = os.environ.get("API_URL")
LOGO_IMAGE_PATH = './assets/logo.jpg'
GOOGLE_FONTS_URL = "<link href='https://fonts.googleapis.com/css2?family=Noto+Sans+SC:wght@400;700&display=swap' rel='stylesheet'>"
LATEX_DELIMS = [
    {"left": "$$", "right": "$$", "display": True},
    {"left": "$",  "right": "$",  "display": False},
    {"left": "\\(", "right": "\\)", "display": False},
    {"left": "\\[", "right": "\\]", "display": True},
]

# =========================
# Base64 and Example Loading Logic (From New Script)
# =========================
def image_to_base64_data_url(filepath: str) -> str:
    """Reads a local image file and encodes it into a Base64 Data URL."""
    try:
        ext = os.path.splitext(filepath)[1].lower()
        mime_types = {'.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.png': 'image/png', '.gif': 'image/gif'}
        mime_type = mime_types.get(ext, 'image/jpeg')
        with open(filepath, "rb") as image_file:
            encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
        return f"data:{mime_type};base64,{encoded_string}"
    except Exception as e:
        print(f"Error encoding image to Base64: {e}")
        return ""

def _get_examples_from_dir(dir_path: str) -> List[List[str]]:
    supported_exts = {".png", ".jpg", ".jpeg", ".bmp", ".webp"}
    examples = []
    if not os.path.exists(dir_path): return []
    for filename in sorted(os.listdir(dir_path)):
        if os.path.splitext(filename)[1].lower() in supported_exts:
            examples.append([os.path.join(dir_path, filename)])
    return examples

TARGETED_EXAMPLES_DIR = "examples/targeted"
COMPLEX_EXAMPLES_DIR = "examples/complex"
targeted_recognition_examples = _get_examples_from_dir(TARGETED_EXAMPLES_DIR)
complex_document_examples = _get_examples_from_dir(COMPLEX_EXAMPLES_DIR)

# =========================
# UI Helpers (From New Script)
# =========================
def render_uploaded_image_div(file_path: str) -> str:
    data_url = image_to_base64_data_url(file_path)
    return f"""
    <div class="uploaded-image">
        <img src="{data_url}" alt="Uploaded image" style="width:100%;height:100%;object-fit:contain;"/>
    </div>
    """

def update_preview_visibility(file_path: Optional[str]) -> Dict:
    if file_path:
        html_content = render_uploaded_image_div(file_path)
        return gr.update(value=html_content, visible=True)
    else:
        return gr.update(value="", visible=False)

def _on_gallery_select(example_paths: List[str], evt: gr.SelectData):
    try:
        idx = evt.index
        return example_paths[idx]
    except Exception:
        return None

# =========================
# API Call Logic (From New Script - More feature complete)
# =========================
def _file_to_b64_image_only(file_path: str) -> Tuple[str, int]:
    if not file_path: raise ValueError("Please upload an image first.")
    ext = os.path.splitext(file_path)[1].lower()
    if ext not in {".png", ".jpg", ".jpeg", ".bmp", ".webp"}: raise ValueError("Only image files are supported.")
    with open(file_path, "rb") as f:
        return base64.b64encode(f.read()).decode("utf-8"), 1

def _call_api(api_url: str, file_path: str, use_layout_detection: bool, prompt_label: Optional[str], use_chart_recognition: bool = False) -> Dict[str, Any]:
    b64, file_type = _file_to_b64_image_only(file_path)
    payload = {"file": b64, "useLayoutDetection": bool(use_layout_detection), "fileType": file_type, "layoutMergeBboxesMode": "union"}

    if not use_layout_detection:
        if not prompt_label: raise ValueError("Please select a recognition type.")
        payload["promptLabel"] = prompt_label.strip().lower()

    # This parameter is from the new script's logic
    if use_layout_detection and use_chart_recognition:
        payload["use_chart_recognition"] = True

    try:
        resp = requests.post(api_url, json=payload, timeout=120)
        resp.raise_for_status()
        data = resp.json()
    except requests.exceptions.RequestException as e:
        raise gr.Error(f"API request failed: {e}")
    except json.JSONDecodeError:
        raise gr.Error(f"Invalid JSON response from server:\n{getattr(resp, 'text', '')}")
    if data.get("errorCode", -1) != 0:
        raise gr.Error(f"API returned an error: errorCode={data.get('errorCode')} errorMsg={data.get('errorMsg')}")
    return data

# =========================
# Core Logic for Handling Image URLs (From Old "Xinghe" Script)
# =========================
def url_to_base64_data_url(url: str) -> str:
    """Downloads an image from a URL and formats it as a Base64 Data URL for Markdown."""
    try:
        response = requests.get(url, timeout=30)
        response.raise_for_status()
        mime_type = response.headers.get('Content-Type', 'image/jpeg')
        if not mime_type.startswith('image/'):
             print(f"Warning: URL did not return an image content type. Got: {mime_type}")
             mime_type = 'image/jpeg'
        image_bytes = response.content
        encoded_string = base64.b64encode(image_bytes).decode('utf-8')
        return f"data:{mime_type};base64,{encoded_string}"
    except requests.exceptions.RequestException as e:
        print(f"Error fetching markdown image from URL {url}: {e}")
        return url # Fallback to original URL on error
    except Exception as e:
        print(f"An unexpected error occurred while processing markdown URL {url}: {e}")
        return url

def replace_image_urls_with_data_urls(md_text: str, md_images_map: Dict[str, str]) -> str:
    """Replaces image placeholder paths in Markdown with Base64 Data URLs fetched from external URLs."""
    if not md_images_map:
        return md_text
    for placeholder_path, image_url in md_images_map.items():
        print(f"Processing markdown image for '{placeholder_path}' from URL: {image_url}")
        data_url = url_to_base64_data_url(image_url)
        md_text = md_text.replace(f'src="{placeholder_path}"', f'src="{data_url}"') \
                         .replace(f']({placeholder_path})', f']({data_url})')
    return md_text

def url_to_pil_image(url: str) -> Optional[Image.Image]:
    """Downloads an image from a URL and returns it as a PIL Image object for the Gradio Image component."""
    if not url or not url.startswith(('http://', 'https://')):
        print(f"Warning: Invalid URL provided for visualization image: {url}")
        return None
    try:
        response = requests.get(url, timeout=30)
        response.raise_for_status()
        image_bytes = response.content
        pil_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
        return pil_image
    except requests.exceptions.RequestException as e:
        print(f"Error fetching visualization image from URL {url}: {e}")
        return None
    except Exception as e:
        print(f"Error processing visualization image from URL {url}: {e}")
        return None

# =========================
# API Response Processing (From Old "Xinghe" Script - Handles URLs)
# =========================
def _process_api_response_page(result: Dict[str, Any]) -> Tuple[str, Optional[Image.Image], str]:
    """
    Processes the API response which contains URLs for images.
    1. Converts markdown image URLs to inline Base64 Data URLs.
    2. Downloads the visualization image URL into a PIL Image object.
    """
    layout_results = (result or {}).get("layoutParsingResults", [])
    if not layout_results:
        return "No content was recognized.", None, ""

    page0 = layout_results[0] or {}

    # Step 1: Process Markdown content using URL-to-Base64 logic
    md_data = page0.get("markdown") or {}
    md_text = md_data.get("text", "") or ""
    md_images_map = md_data.get("images", {}) # This map contains URLs: {"placeholder.jpg": "http://..."}
    if md_images_map:
        md_text = replace_image_urls_with_data_urls(md_text, md_images_map)

    # Step 2: Process Visualization images by downloading from URLs
    vis_images: List[Image.Image] = []
    out_imgs = page0.get("outputImages") or {} # This dict contains URLs: {"0": "http://...", "1": "http://..."}
    for _, img_url in sorted(out_imgs.items()):
        pil_image = url_to_pil_image(img_url)
        if pil_image:
            vis_images.append(pil_image)
        else:
            print(f"Warning: Failed to load visualization image from URL: {img_url}")

    # Logic to select the final visualization image
    output_image: Optional[Image.Image] = None
    if len(vis_images) >= 2:
        output_image = vis_images[1]
    elif vis_images:
        output_image = vis_images[0]

    return md_text or "(Empty result)", output_image, md_text

# =========================
# Handlers (From New Script - More feature complete)
# =========================
def handle_complex_doc(file_path: str, use_chart_recognition: bool) -> Tuple[str, Optional[Image.Image], str]:
    if not file_path: raise gr.Error("Please upload an image first.")
    data = _call_api(DEFAULT_API_URL, file_path, use_layout_detection=True, prompt_label=None, use_chart_recognition=use_chart_recognition)
    result = data.get("result", {})
    return _process_api_response_page(result)

def handle_targeted_recognition(file_path: str, prompt_choice: str) -> Tuple[str, str]:
    if not file_path: raise gr.Error("Please upload an image first.")
    mapping = {"Text Recognition": "ocr", "Formula Recognition": "formula", "Table Recognition": "table", "Chart Recognition": "chart"}
    label = mapping.get(prompt_choice, "ocr")
    data = _call_api(DEFAULT_API_URL, file_path, use_layout_detection=False, prompt_label=label)
    result = data.get("result", {})
    md_preview, _, md_raw = _process_api_response_page(result)
    return md_preview, md_raw

# =========================
# CSS & UI (From New Script)
# =========================
custom_css = '''
body, button, input, textarea, select, p, label { font-family: "Microsoft YaHei","微软雅黑","Microsoft YaHei UI", "Noto Sans SC","PingFang SC",sans-serif !important; }
.app-header { text-align: center; max-width: 900px; margin: 0 auto 4px !important; padding: 0 !important; }
.gradio-container { padding-top: 2px !important; padding-bottom: 2px !important; }
.gradio-container .tabs { margin-top: 0px !important; }
.gradio-container .tabitem { padding-top: 4px !important; }
.prompt-grid { gap: 8px !important; margin-top: 4px !important; }
.prompt-grid button { height: 40px !important; min-height: 0 !important; padding: 0 12px !important; border-radius: 8px !important; font-weight: 600 !important; font-size: 13px !important; letter-spacing: .2px; }
.quick-links { text-align: center; padding: 8px 0; border: 1px solid #e5e7eb; border-radius: 8px; margin: 8px auto !important; max-width: 900px; }
.quick-links a { margin: 0 15px; font-size: 14px; font-weight: 600; text-decoration: none; color: #3b82f6; }
.quick-links a:hover { text-decoration: underline; }
#image_preview_vl, #image_preview_doc { height: 60vh !important; overflow: auto; }
#vis_image_doc { height: 42vh !important; }
#image_preview_vl .uploaded-image, #image_preview_doc .uploaded-image { height: 100%; }
#image_preview_vl img, #image_preview_doc img, #vis_image_doc img { width: 100% !important; height: 100% !important; object-fit: contain !important; }
#md_preview_vl, #md_preview_doc { max-height: 60vh; overflow: auto; scrollbar-gutter: stable both-edges; }
#md_preview_doc .prose img,
#md_preview_vl .prose img {
  display: block !important;
  margin-left: auto !important;
  margin-right: auto !important; /* 块级元素用 margin auto 居中 */
  height: auto; /* 可选:保持比例 */
  max-width: 100%; /* 可选:避免溢出 */
}
#md_preview_vl .prose, #md_preview_doc .prose { line-height: 1.7 !important; font-family: 'Microsoft YaHei','Noto Sans SC','PingFang SC',sans-serif !important; }
'''

with gr.Blocks(head=GOOGLE_FONTS_URL, css=custom_css, theme=gr.themes.Soft()) as demo:
    logo_data_url = image_to_base64_data_url(LOGO_IMAGE_PATH) if os.path.exists(LOGO_IMAGE_PATH) else ""
    gr.HTML(f"""
        <div class="app-header">
            <img src="{logo_data_url}" alt="App Logo" style="max-height:10%; width: auto; margin: 10px auto; display: block;">
        </div>
    """)
    gr.HTML("""
        <div class="quick-links">
            <a href="https://github.com/PaddlePaddle/PaddleOCR" target="_blank">GitHub</a> |
            <a href="https://github.com/PaddlePaddle/PaddleOCR/blob/main/ppstructure/docs/vls.md" target="_blank">Technical Report</a> |
            <a href="https://xinghe.baidu.com/" target="_blank">Model</a>
        </div>
    """)

    with gr.Tabs():
        with gr.Tab("Document Parsing"):
            with gr.Row():
                with gr.Column(scale=5):
                    file_doc = gr.File(label="Upload Image", file_count="single", type="filepath", file_types=["image"])
                    preview_doc_html = gr.HTML(value="", elem_id="image_preview_doc", visible=False)

                    gr.Markdown("_( Use this mode for recognizing full-page documents with structured layouts, such as reports, papers, or magazines.)_")
                    gr.Markdown("💡 *To recognize a single, pre-cropped element (e.g., a table or formula), switch to the 'Content Recognition' tab for better results.*")

                    with gr.Row(variant="panel"):
                        chart_parsing_switch = gr.Checkbox(label="Enable chart parsing", value=False, scale=1)
                        btn_parse = gr.Button("Parse Document", variant="primary", scale=2)

                    if complex_document_examples:
                        complex_paths = [e[0] for e in complex_document_examples]
                        complex_state = gr.State(complex_paths)
                        gr.Markdown("**Document Examples (Click an image to load)**")
                        gallery_complex = gr.Gallery(value=complex_paths, columns=4, height=400, preview=False, label=None, allow_preview=False)
                        gallery_complex.select(fn=_on_gallery_select, inputs=[complex_state], outputs=[file_doc])

                with gr.Column(scale=7):
                    with gr.Tabs():
                        with gr.Tab("Markdown Preview"):
                            md_preview_doc = gr.Markdown("Please upload an image and click 'Parse Document'.", latex_delimiters=LATEX_DELIMS, elem_id="md_preview_doc")
                        with gr.Tab("Visualization"):
                            vis_image_doc = gr.Image(label="Detection Visualization", interactive=False, elem_id="vis_image_doc")
                        with gr.Tab("Markdown Source"):
                            md_raw_doc = gr.Code(label="Markdown Source Code", language="markdown")

            file_doc.change(fn=update_preview_visibility, inputs=[file_doc], outputs=[preview_doc_html])
            btn_parse.click(fn=handle_complex_doc, inputs=[file_doc, chart_parsing_switch], outputs=[md_preview_doc, vis_image_doc, md_raw_doc])

        with gr.Tab("Content Recognition"):
            with gr.Row():
                with gr.Column(scale=5):
                    file_vl = gr.File(label="Upload Image", file_count="single", type="filepath", file_types=["image"])
                    preview_vl_html = gr.HTML(value="", elem_id="image_preview_vl", visible=False)

                    gr.Markdown("_(Best for images with a **simple, single-column layout** (e.g., pure text), or for a **pre-cropped single element** like a table, formula, or chart.)_")
                    gr.Markdown("Choose a recognition type:")
                    with gr.Row(elem_classes=["prompt-grid"]):
                        btn_ocr = gr.Button("Text Recognition", variant="secondary")
                        btn_formula = gr.Button("Formula Recognition", "secondary")
                    with gr.Row(elem_classes=["prompt-grid"]):
                        btn_table = gr.Button("Table Recognition", variant="secondary")
                        btn_chart = gr.Button("Chart Recognition", variant="secondary")

                    if targeted_recognition_examples:
                        targeted_paths = [e[0] for e in targeted_recognition_examples]
                        targeted_state = gr.State(targeted_paths)
                        gr.Markdown("**Content Recognition Examples (Click an image to load)**")
                        gallery_targeted = gr.Gallery(value=targeted_paths, columns=4, height=400, preview=False, label=None, allow_preview=False)
                        gallery_targeted.select(fn=_on_gallery_select, inputs=[targeted_state], outputs=[file_vl])

                with gr.Column(scale=7):
                    with gr.Tabs():
                        with gr.Tab("Recognition Result"):
                            md_preview_vl = gr.Markdown("Please upload an image and click a recognition type.", latex_delimiters=LATEX_DELIMS, elem_id="md_preview_vl")
                        with gr.Tab("Raw Output"):
                            md_raw_vl = gr.Code(label="Raw Output", language="markdown")

            file_vl.change(fn=update_preview_visibility, inputs=[file_vl], outputs=[preview_vl_html])
            btn_ocr.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Text Recognition")], outputs=[md_preview_vl, md_raw_vl])
            btn_formula.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Formula Recognition")], outputs=[md_preview_vl, md_raw_vl])
            btn_table.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Table Recognition")], outputs=[md_preview_vl, md_raw_vl])
            btn_chart.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Chart Recognition")], outputs=[md_preview_vl, md_raw_vl])

if __name__ == "__main__":
    demo.queue()
    demo.launch(server_name="0.0.0.0", server_port=8812, share=False)