File size: 18,567 Bytes
bff3709 f9aef00 bff3709 68676d8 8df070d bff3709 d18ae45 a7d9e19 bff3709 a7d9e19 8df070d bff3709 d18ae45 bff3709 8df070d f2998c3 bff3709 d18ae45 bff3709 d18ae45 bff3709 a7d9e19 bff3709 a7d9e19 bff3709 a7d9e19 bff3709 ddb227a bff3709 d18ae45 f9aef00 bf68423 f9aef00 d18ae45 bff3709 ab4f707 bff3709 a7d9e19 bff3709 a7d9e19 bff3709 a7d9e19 bff3709 d18ae45 bff3709 d18ae45 bff3709 d18ae45 bff3709 d18ae45 bff3709 d18ae45 bff3709 d18ae45 bff3709 d18ae45 68676d8 8df070d d18ae45 bff3709 d18ae45 bff3709 d18ae45 bff3709 d18ae45 bff3709 d18ae45 bff3709 87fcc8a feb46ff bff3709 d18ae45 bf68423 87fcc8a bff3709 d18ae45 f2998c3 d18ae45 bff3709 09cbe60 bff3709 d18ae45 bff3709 09cbe60 bff3709 09cbe60 bff3709 667cb5b d18ae45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import base64
import io
import json
import os
from typing import Dict, List, Tuple, Any, Optional
import time
import requests
from PIL import Image
import gradio as gr
import re
# =========================
# Config
# =========================
DEFAULT_API_URL = os.environ.get("API_URL")
TOKEN = os.environ.get("TOKEN")
LOGO_IMAGE_PATH = './assets/logo.jpg'
GOOGLE_FONTS_URL = "<link href='https://fonts.googleapis.com/css2?family=Noto+Sans+SC:wght@400;700&display=swap' rel='stylesheet'>"
LATEX_DELIMS = [
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\[", "right": "\\]", "display": True},
]
AUTH_HEADER = {"Authorization": f"bearer {TOKEN}"}
JSON_HEADERS = {**AUTH_HEADER, "Content-Type": "application/json"}
# =========================
# Base64 and Example Loading Logic
# =========================
def image_to_base64_data_url(filepath: str) -> str:
"""Reads a local image file and encodes it into a Base64 Data URL."""
try:
ext = os.path.splitext(filepath)[1].lower()
mime_types = {'.jpg': 'image/jpeg', '.jpeg': 'image/jpeg', '.png': 'image/png', '.gif': 'image/gif'}
mime_type = mime_types.get(ext, 'image/jpeg')
with open(filepath, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
return f"data:{mime_type};base64,{encoded_string}"
except Exception as e:
print(f"Error encoding image to Base64: {e}")
return ""
def _escape_inequalities_in_math(md: str) -> str:
"""
Finds math blocks in a Markdown string and replaces < and > with
their LaTeX equivalents, \lt and \gt, to prevent markdown parsing errors.
"""
_MATH_PATTERNS = [
re.compile(r"\$\$([\s\S]+?)\$\$"),
re.compile(r"\$([^\$]+?)\$"),
re.compile(r"\\\[([\s\S]+?)\\\]"),
re.compile(r"\\\(([\s\S]+?)\\\)"),
]
def fix(s: str) -> str:
s = s.replace("<=", r" \le ").replace(">=", r" \ge ")
s = s.replace("≤", r" \le ").replace("≥", r" \ge ")
s = s.replace("<", r" \lt ").replace(">", r" \gt ")
return s
for pat in _MATH_PATTERNS:
md = pat.sub(lambda m: m.group(0).replace(m.group(1), fix(m.group(1))), md)
return md
def _get_examples_from_dir(dir_path: str) -> List[List[str]]:
supported_exts = {".png", ".jpg", ".jpeg", ".bmp", ".webp"}
examples = []
if not os.path.exists(dir_path): return []
for filename in sorted(os.listdir(dir_path)):
if os.path.splitext(filename)[1].lower() in supported_exts:
examples.append([os.path.join(dir_path, filename)])
return examples
TARGETED_EXAMPLES_DIR = "examples/targeted"
COMPLEX_EXAMPLES_DIR = "examples/complex"
targeted_recognition_examples = _get_examples_from_dir(TARGETED_EXAMPLES_DIR)
complex_document_examples = _get_examples_from_dir(COMPLEX_EXAMPLES_DIR)
# =========================
# UI Helpers
# =========================
def render_uploaded_image_div(file_path: str) -> str:
data_url = image_to_base64_data_url(file_path)
return f"""
<div class="uploaded-image">
<img src="{data_url}" alt="Uploaded image" style="width:100%;height:100%;object-fit:contain;"/>
</div>
"""
def update_preview_visibility(file_path: Optional[str]) -> Dict:
if file_path:
html_content = render_uploaded_image_div(file_path)
return gr.update(value=html_content, visible=True)
else:
return gr.update(value="", visible=False)
def _on_gallery_select(example_paths: List[str], evt: gr.SelectData):
try:
idx = evt.index
return example_paths[idx]
except Exception:
return None
# =========================
# API Call Logic
# =========================
def _file_to_b64_image_only(file_path: str) -> Tuple[str, int]:
if not file_path: raise ValueError("Please upload an image first.")
ext = os.path.splitext(file_path)[1].lower()
if ext not in {".png", ".jpg", ".jpeg", ".bmp", ".webp"}: raise ValueError("Only image files are supported.")
with open(file_path, "rb") as f:
return base64.b64encode(f.read()).decode("utf-8"), 1
def _call_api(api_url: str, file_path: str, use_layout_detection: bool,
prompt_label: Optional[str], use_chart_recognition: bool = False) -> Dict[str, Any]:
b64, file_type = _file_to_b64_image_only(file_path)
payload = {
"file": b64,
"useLayoutDetection": bool(use_layout_detection),
"fileType": file_type,
"layoutMergeBboxesMode": "union",
}
if not use_layout_detection:
if not prompt_label:
raise ValueError("Please select a recognition type.")
payload["promptLabel"] = prompt_label.strip().lower()
if use_layout_detection and use_chart_recognition:
payload["useChartRecognition"] = True
try:
print(f"Sending API request to {api_url}...")
start_time = time.time()
resp = requests.post(api_url, json=payload, headers=JSON_HEADERS, timeout=600)
end_time = time.time()
duration = end_time - start_time
print(f"Received API response in {duration:.2f} seconds.")
resp.raise_for_status()
data = resp.json()
except requests.exceptions.RequestException as e:
raise gr.Error(f"API request failed:{e}")
except json.JSONDecodeError:
raise gr.Error(f"Invalid JSON response from server:\n{getattr(resp, 'text', '')}")
if data.get("errorCode", -1) != 0:
raise gr.Error("API returned an error:")
return data
# =========================
# API Response Processing
# =========================
# 【改动点】: 这个函数现在不再需要,因为我们不再将URL下载为PIL Image对象。
# def url_to_pil_image(url: str) -> Optional[Image.Image]:
# """Downloads an image from a URL and returns it as a PIL Image object for the Gradio Image component."""
# if not url or not url.startswith(('http://', 'https://')):
# print(f"Warning: Invalid URL provided for visualization image: {url}")
# return None
# try:
# start_time = time.time()
# response = requests.get(url, timeout=600)
# end_time = time.time()
# print(f"Fetched visualization image from {url} in {end_time - start_time:.2f} seconds.")
#
# response.raise_for_status()
# image_bytes = response.content
# pil_image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
# return pil_image
# except requests.exceptions.RequestException as e:
# print(f"Error fetching visualization image from URL {url}: {e}")
# return None
# except Exception as e:
# print(f"Error processing visualization image from URL {url}: {e}")
# return None
def _process_api_response_page(result: Dict[str, Any]) -> Tuple[str, str, str]:
"""
Processes the API response.
1. Replaces markdown image placeholders with their direct URLs.
2. Constructs an HTML <img> tag string for the visualization image URL.
"""
layout_results = (result or {}).get("layoutParsingResults", [])
if not layout_results:
return "No content was recognized.", "<p>No visualization available.</p>", ""
page0 = layout_results[0] or {}
# Step 1: Process Markdown content (unchanged from previous optimization)
md_data = page0.get("markdown") or {}
md_text = md_data.get("text", "") or ""
md_images_map = md_data.get("images", {})
if md_images_map:
for placeholder_path, image_url in md_images_map.items():
md_text = md_text.replace(f'src="{placeholder_path}"', f'src="{image_url}"') \
.replace(f']({placeholder_path})', f']({image_url})')
# 【核心改动点】 Step 2: Process Visualization images by creating an HTML string
output_html = "<p style='text-align:center; color:#888;'>No visualization image available.</p>"
out_imgs = page0.get("outputImages") or {}
# Get all image URLs and sort them
sorted_urls = [img_url for _, img_url in sorted(out_imgs.items()) if img_url]
# Logic to select the final visualization image URL
output_image_url: Optional[str] = None
if len(sorted_urls) >= 2:
output_image_url = sorted_urls[1]
elif sorted_urls:
output_image_url = sorted_urls[0]
# If a URL was found, create the <img> tag
if output_image_url:
print(f"Found visualization image URL: {output_image_url}")
# The CSS will style this `img` tag because of the `#vis_image_doc img` selector
output_html = f'<img src="{output_image_url}" alt="Detection Visualization">'
else:
print("Warning: No visualization image URL found in the API response.")
md_text = _escape_inequalities_in_math(md_text)
return md_text or "(Empty result)", output_html, md_text
# =========================
# Handlers
# =========================
def handle_complex_doc(file_path: str, use_chart_recognition: bool) -> Tuple[str, str, str]:
if not file_path: raise gr.Error("Please upload an image first.")
data = _call_api(DEFAULT_API_URL, file_path, use_layout_detection=True, prompt_label=None, use_chart_recognition=use_chart_recognition)
result = data.get("result", {})
# Note the return types now align with the new function signature
return _process_api_response_page(result)
def handle_targeted_recognition(file_path: str, prompt_choice: str) -> Tuple[str, str]:
if not file_path: raise gr.Error("Please upload an image first.")
mapping = {"Text Recognition": "ocr", "Formula Recognition": "formula", "Table Recognition": "table", "Chart Recognition": "chart"}
label = mapping.get(prompt_choice, "ocr")
data = _call_api(DEFAULT_API_URL, file_path, use_layout_detection=False, prompt_label=label)
result = data.get("result", {})
md_preview, _, md_raw = _process_api_response_page(result)
return md_preview, md_raw
# =========================
# CSS & UI
# =========================
custom_css = """
/* 全局字体 */
body, .gradio-container {
font-family: "Noto Sans SC", "Microsoft YaHei", "PingFang SC", sans-serif;
}
/* ... (rest of the CSS is unchanged) ... */
.app-header { text-align: center; max-width: 900px; margin: 0 auto 8px !important; }
.gradio-container { padding: 4px 0 !important; }
.gradio-container [data-testid="tabs"], .gradio-container .tabs { margin-top: 0 !important; }
.gradio-container [data-testid="tabitem"], .gradio-container .tabitem { padding-top: 4px !important; }
.quick-links { text-align: center; padding: 8px 0; border: 1px solid #e5e7eb; border-radius: 8px; margin: 8px auto; max-width: 900px; }
.quick-links a { margin: 0 12px; font-size: 14px; font-weight: 600; color: #3b82f6; text-decoration: none; }
.quick-links a:hover { text-decoration: underline; }
.prompt-grid { display: flex; flex-wrap: wrap; gap: 8px; margin-top: 6px; }
.prompt-grid button { height: 40px !important; padding: 0 12px !important; border-radius: 8px !important; font-weight: 600 !important; font-size: 13px !important; letter-spacing: 0.2px; }
#image_preview_vl, #image_preview_doc { height: 400px !important; overflow: auto; }
#image_preview_vl img, #image_preview_doc img, #vis_image_doc img { width: 100% !important; height: auto !important; object-fit: contain !important; display: block; }
#md_preview_vl, #md_preview_doc { max-height: 540px; min-height: 180px; overflow: auto; scrollbar-gutter: stable both-edges; }
#md_preview_vl .prose, #md_preview_doc .prose { line-height: 1.7 !important; }
#md_preview_vl .prose img, #md_preview_doc .prose img { display: block; margin: 0 auto; max-width: 100%; height: auto; }
.notice { margin: 8px auto 0; max-width: 900px; padding: 10px 12px; border: 1px solid #e5e7eb; border-radius: 8px; background: #f8fafc; font-size: 14px; line-height: 1.6; }
.notice strong { font-weight: 700; }
.notice a { color: #3b82f6; text-decoration: none; }
.notice a:hover { text-decoration: underline; }
"""
with gr.Blocks(head=GOOGLE_FONTS_URL, css=custom_css, theme=gr.themes.Soft()) as demo:
logo_data_url = image_to_base64_data_url(LOGO_IMAGE_PATH) if os.path.exists(LOGO_IMAGE_PATH) else ""
gr.HTML(f"""<div class="app-header"><img src="{logo_data_url}" alt="App Logo" style="max-height:10%; width: auto; margin: 10px auto; display: block;"></div>""")
gr.HTML("""<div class="notice"><strong>Heads up:</strong> The Hugging Face demo can be slow at times. For a faster experience, please try <a href="https://aistudio.baidu.com/application/detail/98365" target="_blank" rel="noopener noreferrer">Baidu AI Studio</a> or <a href="https://modelscope.cn/studios/PaddlePaddle/PaddleOCR-VL_Online_Demo/summary" target="_blank" rel="noopener noreferrer">ModelScope</a>.</div>""")
gr.HTML("""<div class="quick-links"><a href="https://github.com/PaddlePaddle/PaddleOCR" target="_blank">GitHub</a> | <a href="https://ernie.baidu.com/blog/publication/PaddleOCR-VL_Technical_Report.pdf" target="_blank">Technical Report</a> | <a href="https://huggingface.co/PaddlePaddle/PaddleOCR-VL" target="_blank">Model</a></div>""")
with gr.Tabs():
with gr.Tab("Document Parsing"):
with gr.Row():
with gr.Column(scale=5):
file_doc = gr.File(label="Upload Image", file_count="single", type="filepath", file_types=["image"])
preview_doc_html = gr.HTML(value="", elem_id="image_preview_doc", visible=False)
gr.Markdown("_( Use this mode for recognizing full-page documents with structured layouts, such as reports, papers, or magazines.)_")
gr.Markdown("💡 *To recognize a single, pre-cropped element (e.g., a table or formula), switch to the 'Element-level Recognition' tab for better results.*")
with gr.Row(variant="panel"):
chart_parsing_switch = gr.Checkbox(label="Enable chart parsing", value=False, scale=1)
btn_parse = gr.Button("Parse Document", variant="primary", scale=2)
if complex_document_examples:
complex_paths = [e[0] for e in complex_document_examples]
complex_state = gr.State(complex_paths)
gr.Markdown("**Document Examples (Click an image to load)**")
gallery_complex = gr.Gallery(value=complex_paths, columns=4, height=400, preview=False, label=None, allow_preview=False)
gallery_complex.select(fn=_on_gallery_select, inputs=[complex_state], outputs=[file_doc])
with gr.Column(scale=7):
with gr.Tabs():
with gr.Tab("Markdown Preview"):
md_preview_doc = gr.Markdown("Please upload an image and click 'Parse Document'.", latex_delimiters=LATEX_DELIMS, elem_id="md_preview_doc")
with gr.Tab("Visualization"):
# 【核心改动点】: 将 gr.Image 替换为 gr.HTML
vis_image_doc = gr.HTML(label="Detection Visualization", elem_id="vis_image_doc")
with gr.Tab("Markdown Source"):
md_raw_doc = gr.Code(label="Markdown Source Code", language="markdown")
file_doc.change(fn=update_preview_visibility, inputs=[file_doc], outputs=[preview_doc_html])
btn_parse.click(fn=handle_complex_doc, inputs=[file_doc, chart_parsing_switch], outputs=[md_preview_doc, vis_image_doc, md_raw_doc])
with gr.Tab("Element-level Recognition"):
with gr.Row():
with gr.Column(scale=5):
file_vl = gr.File(label="Upload Image", file_count="single", type="filepath", file_types=["image"])
preview_vl_html = gr.HTML(value="", elem_id="image_preview_vl", visible=False)
gr.Markdown("_(Best for images with a **simple, single-column layout** (e.g., pure text), or for a **pre-cropped single element** like a table, formula, or chart.)_")
gr.Markdown("Choose a recognition type:")
with gr.Row(elem_classes=["prompt-grid"]):
btn_ocr = gr.Button("Text Recognition", variant="secondary")
btn_formula = gr.Button("Formula Recognition", "secondary")
with gr.Row(elem_classes=["prompt-grid"]):
btn_table = gr.Button("Table Recognition", variant="secondary")
btn_chart = gr.Button("Chart Recognition", variant="secondary")
if targeted_recognition_examples:
targeted_paths = [e[0] for e in targeted_recognition_examples]
targeted_state = gr.State(targeted_paths)
gr.Markdown("**Element-level Recognition Examples (Click an image to load)**")
gallery_targeted = gr.Gallery(value=targeted_paths, columns=4, height=400, preview=False, label=None, allow_preview=False)
gallery_targeted.select(fn=_on_gallery_select, inputs=[targeted_state], outputs=[file_vl])
with gr.Column(scale=7):
with gr.Tabs():
with gr.Tab("Recognition Result"):
md_preview_vl = gr.Markdown("Please upload an image and click a recognition type.", latex_delimiters=LATEX_DELIMS, elem_id="md_preview_vl")
with gr.Tab("Raw Output"):
md_raw_vl = gr.Code(label="Raw Output", language="markdown")
file_vl.change(fn=update_preview_visibility, inputs=[file_vl], outputs=[preview_vl_html])
btn_ocr.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Text Recognition")], outputs=[md_preview_vl, md_raw_vl])
btn_formula.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Formula Recognition")], outputs=[md_preview_vl, md_raw_vl])
btn_table.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Table Recognition")], outputs=[md_preview_vl, md_raw_vl])
btn_chart.click(fn=handle_targeted_recognition, inputs=[file_vl, gr.State("Chart Recognition")], outputs=[md_preview_vl, md_raw_vl])
if __name__ == "__main__":
port = int(os.getenv("PORT", "7860"))
demo.queue(max_size=6).launch(server_name="0.0.0.0", server_port=port,share=False) |