File size: 8,235 Bytes
26a63c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2897497
26a63c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2897497
26a63c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2897497
26a63c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b71e18c
8da4893
26a63c0
 
 
 
334dc18
26a63c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a541cba
26a63c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import os
import re
from PIL import Image
import spaces
import gradio as gr
import uuid
import argparse
from huggingface_hub import login, snapshot_download

import torch
from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
from diffusers.utils import load_image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from utils.vprocess import process_vision_info, resizeinput


def extract_gen_content(text):
    text = text[6:-7]
    return text

def _load_model_processor():

    device = "cuda" if torch.cuda.is_available() else "cpu"
    local_dir = snapshot_download(
        repo_id="xiabs/DreamOmni2",
        revision="main",
        allow_patterns=["vlm-model/**", "gen_lora/**"],
    )
    vlm_dir = os.path.join(local_dir, 'vlm-model')
    lora_dir = os.path.join(local_dir, 'gen_lora')

    print(f"Loading models from vlm_path: {vlm_dir}, gen_lora_path: {lora_dir}")
    pipe = DreamOmni2Pipeline.from_pretrained(
        "black-forest-labs/FLUX.1-Kontext-dev",
        torch_dtype=torch.bfloat16
    ).to(device)
    pipe.load_lora_weights(lora_dir, adapter_name="generation")
    pipe.set_adapters(["generation"], adapter_weights=[1])

    vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
        vlm_dir,
        torch_dtype="bfloat16"
    ).to(device)
    processor = AutoProcessor.from_pretrained(vlm_dir)
    return vlm_model, processor, pipe


def _launch_demo(vlm_model, processor, pipe):

    @spaces.GPU(duration=90)
    def infer_vlm(input_img_path, input_instruction, prefix):
        if not vlm_model or not processor:
            raise gr.Error("VLM Model not loaded. Cannot process prompt.")
        tp = []
        for path in input_img_path:
            tp.append({"type": "image", "image": path})
        tp.append({"type": "text", "text": input_instruction + prefix})
        messages = [{"role": "user", "content": tp}]

        text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
        inputs = inputs.to(device=vlm_model.device)

        generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
        generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
        output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
        return output_text[0]

    PREFERRED_KONTEXT_RESOLUTIONS = [
        (672, 1568),
        (688, 1504),
        (720, 1456),
        (752, 1392),
        (800, 1328),
        (832, 1248),
        (880, 1184),
        (944, 1104),
        (1024, 1024),
        (1104, 944),
        (1184, 880),
        (1248, 832),
        (1328, 800),
        (1392, 752),
        (1456, 720),
        (1504, 688),
        (1568, 672),
    ]
    def find_closest_resolution(width, height, preferred_resolutions):
        input_ratio = width / height
        closest_resolution = min(
            preferred_resolutions,
            key=lambda res: abs((res[0] / res[1]) - input_ratio)
        )
        return closest_resolution

    @spaces.GPU(duration=90)
    def perform_generation(input_img_paths, input_instruction, output_path, height=1024, width=1024):
        prefix = " It is generation task."
        source_imgs = []
        for path in input_img_paths:
            img = load_image(path)
            # source_imgs.append(img)
            source_imgs.append(resizeinput(img))
        prompt = infer_vlm(input_img_paths, input_instruction, prefix)
        prompt = extract_gen_content(prompt)
        print(f"Generated Prompt for VLM: {prompt}")

        image = pipe(
            images=source_imgs,
            height=height,
            width=width,
            prompt=prompt,
            num_inference_steps=30,
            guidance_scale=3.5,
        ).images[0]
        image.save(output_path)
        print(f"Generation result saved to {output_path}")

    @spaces.GPU(duration=90)
    def process_request(image_file_1, image_file_2, instruction):
        # debugpy.listen(5678)
        # print("Waiting for debugger attach...")
        # debugpy.wait_for_client()
        if not image_file_1 or not image_file_2:
            raise gr.Error("Please upload both images.")
        if not instruction:
            raise gr.Error("Please provide an instruction.")
        if not pipe or not vlm_model:
            raise gr.Error("Models not loaded. Check the console for errors.")
        
        output_path = f"/tmp/{uuid.uuid4()}.png"
        input_img_paths = [image_file_1, image_file_2]  # List of file paths from the two gr.File inputs

        perform_generation(input_img_paths, instruction, output_path)
        return output_path

    css = """
    .text-center { text-align: center; }
    .result-img img {
        max-height: 60vh !important; 
        min-height: 30vh !important;
        width: auto !important;      
        object-fit: contain;         
    }
    .input-img img {
        max-height: 30vh !important; 
        width: auto !important;      
        object-fit: contain;         
    }
    """


    with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
        gr.HTML(
            """
            <h1 style="text-align:center; font-size:40px; font-weight:bold; margin-bottom:16px;">
                DreamOmni2: Multimodal Image Generation and Editing
            </h1>
            """
        )
        gr.Markdown(
            "Upload two images, provide an instruction, and click 'Run'.",
            elem_classes="text-center"
        )
        with gr.Row():
            with gr.Column(scale=2):
                gr.Markdown("⬆️ Upload images. Click or drag to upload.")
                
                with gr.Row():
                    image_uploader_1 = gr.Image(
                        label="Img 1",
                        type="filepath",
                        interactive=True,
                        elem_classes="input-img",
                    )
                    image_uploader_2 = gr.Image(
                        label="Img 2",
                        type="filepath",
                        interactive=True,
                        elem_classes="input-img",
                    )
                
                instruction_text = gr.Textbox(
                    label="Instruction",
                    lines=2,
                    placeholder="Input your instruction for generation or editing here...",
                )
                run_button = gr.Button("Run", variant="primary")

            with gr.Column(scale=2):
                gr.Markdown("🖼️ **Generation Mode**: Create new scenes from reference images.\n\n"
                            "Tip: If the result is not what you expect, try clicking **Run** again. ")
                output_image = gr.Image(
                    label="Result",
                    type="filepath",
                    elem_classes="result-img",
                )

        # --- Examples ---
        gr.Markdown("## Examples")

        gr.Examples(
            label="Generation Examples",
            examples=[
                [
                    "example_input/gen_tests/img1.jpg",
                    "example_input/gen_tests/img2.jpg",
                    "In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
                    "example_input/gen_tests/gen_res.png"
                ]
            ],
            inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
            cache_examples=False,
        )

        run_button.click(
            fn=process_request,
            inputs=[image_uploader_1, image_uploader_2, instruction_text],
            outputs=output_image
        )
    
    demo.launch()


if __name__ == "__main__":
    vlm_model, processor, pipe = _load_model_processor()
    _launch_demo(vlm_model, processor, pipe)