File size: 8,149 Bytes
26a63c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import torch
from dreamomni2.pipeline_dreamomni2 import DreamOmni2Pipeline
from diffusers.utils import load_image
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
# from qwen_vl_utils import process_vision_info
from utils.vprocess import process_vision_info, resizeinput
import os
import re
from PIL import Image
import gradio as gr
import uuid
import argparse 

def parse_args():
    """Parses command-line arguments for model paths and server configuration."""
    parser = argparse.ArgumentParser(description="Launch DreamOmni2 Editing Gradio Demo.")
    parser.add_argument(
        "--vlm_path", 
        type=str, 
        default="vlm-model", 
        help="Path to the Qwen2_5_VL VLM model directory."
    )
    parser.add_argument(
        "--gen_lora_path", 
        type=str, 
        default="gen_lora", 
        help="Path to the FLUX.1-Kontext generation LoRA weights directory."
    )
    parser.add_argument(
        "--server_name", 
        type=str, 
        default="0.0.0.0", 
        help="The server name (IP address) to host the Gradio demo."
    )
    parser.add_argument(
        "--server_port", 
        type=int, 
        default=7860, 
        help="The port number to host the Gradio demo."
    )
    args = parser.parse_args()
    return args

ARGS = parse_args()
vlm_path = ARGS.vlm_path
gen_lora_path = ARGS.gen_lora_path
server_name = ARGS.server_name
server_port = ARGS.server_port
device = "cuda"

def extract_gen_content(text):
    text = text[6:-7]
    return text

print(f"Loading models from vlm_path: {vlm_path}, gen_lora_path: {gen_lora_path}")

pipe = DreamOmni2Pipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Kontext-dev",
    torch_dtype=torch.bfloat16
)
pipe.to(device)
pipe.load_lora_weights(gen_lora_path, adapter_name="generation")
pipe.set_adapters(["generation"], adapter_weights=[1])  

vlm_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    vlm_path,
    torch_dtype="bfloat16",
    device_map="cuda"
)
processor = AutoProcessor.from_pretrained(vlm_path)


def infer_vlm(input_img_path, input_instruction, prefix):
    if not vlm_model or not processor:
        raise gr.Error("VLM Model not loaded. Cannot process prompt.")
    tp = []
    for path in input_img_path:
        tp.append({"type": "image", "image": path})
    tp.append({"type": "text", "text": input_instruction + prefix})
    messages = [{"role": "user", "content": tp}]

    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt")
    inputs = inputs.to("cuda")

    generated_ids = vlm_model.generate(**inputs, do_sample=False, max_new_tokens=4096)
    generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
    output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
    return output_text[0]


PREFERRED_KONTEXT_RESOLUTIONS = [
    (672, 1568),
    (688, 1504),
    (720, 1456),
    (752, 1392),
    (800, 1328),
    (832, 1248),
    (880, 1184),
    (944, 1104),
    (1024, 1024),
    (1104, 944),
    (1184, 880),
    (1248, 832),
    (1328, 800),
    (1392, 752),
    (1456, 720),
    (1504, 688),
    (1568, 672),
]
def find_closest_resolution(width, height, preferred_resolutions):
    input_ratio = width / height
    closest_resolution = min(
        preferred_resolutions,
        key=lambda res: abs((res[0] / res[1]) - input_ratio)
    )
    return closest_resolution

def perform_generation(input_img_paths, input_instruction, output_path, height=1024, width=1024):
    prefix = " It is generation task."
    source_imgs = []
    for path in input_img_paths:
        img = load_image(path)
        # source_imgs.append(img)
        source_imgs.append(resizeinput(img))
    prompt = infer_vlm(input_img_paths, input_instruction, prefix)
    prompt = extract_gen_content(prompt)
    print(f"Generated Prompt for VLM: {prompt}")
    
    image = pipe(
        images=source_imgs,
        height=height,
        width=width,
        prompt=prompt,
        num_inference_steps=30,
        guidance_scale=3.5,
    ).images[0]
    
    image.save(output_path)
    print(f"Generation result saved to {output_path}")

# --- Gradio Interface Logic ---

def process_request(image_file_1, image_file_2, instruction):
    # debugpy.listen(5678)
    # print("Waiting for debugger attach...")
    # debugpy.wait_for_client()
    if not image_file_1 or not image_file_2:
        raise gr.Error("Please upload both images.")
    if not instruction:
        raise gr.Error("Please provide an instruction.")
    if not pipe or not vlm_model:
        raise gr.Error("Models not loaded. Check the console for errors.")
    
    output_path = f"/tmp/{uuid.uuid4()}.png"
    input_img_paths = [image_file_1, image_file_2]  # List of file paths from the two gr.File inputs

    perform_generation(input_img_paths, instruction, output_path)
    
    return output_path


css = """
.text-center { text-align: center; }
.result-img img {
    max-height: 60vh !important; 
    min-height: 30vh !important;
    width: auto !important;      
    object-fit: contain;         
}
.input-img img {
    max-height: 30vh !important; 
    width: auto !important;      
    object-fit: contain;         
}
"""


with gr.Blocks(theme=gr.themes.Soft(), title="DreamOmni2", css=css) as demo:
    gr.HTML(
        """
        <h1 style="text-align:center; font-size:48px; font-weight:bold; margin-bottom:20px;">
            DreamOmni2: Omni-purpose Image Generation and Editing
        </h1>
        """
    )
    gr.Markdown(
        "Select a mode, upload two images, provide an instruction, and click 'Run'.",
        elem_classes="text-center"
    )
    with gr.Row():
        with gr.Column(scale=2):
            gr.Markdown("⬆️ Upload images. Click or drag to upload.")
            
            with gr.Row():
                image_uploader_1 = gr.Image(
                    label="Img 1",
                    type="filepath",
                    interactive=True,
                    elem_classes="input-img",
                )
                image_uploader_2 = gr.Image(
                    label="Img 2",
                    type="filepath",
                    interactive=True,
                    elem_classes="input-img",
                )
            
            instruction_text = gr.Textbox(
                label="Instruction",
                lines=2,
                placeholder="Input your instruction for generation or editing here...",
            )
            run_button = gr.Button("Run", variant="primary")

        with gr.Column(scale=2):
            gr.Markdown("🖼️ **Generation Mode**: Create new scenes from reference images."
                        "Tip: If the result is not what you expect, try clicking **Run** again. ")
            output_image = gr.Image(
                label="Result",
                type="filepath",
                elem_classes="result-img",
            )

    # --- Examples ---
    gr.Markdown("## Examples")
    gr.Examples(
        label="Generation Examples",
        examples=[
            [
                "example_input/gen_tests/img1.jpg",
                "example_input/gen_tests/img2.jpg",
                "In the scene, the character from the first image stands on the left, and the character from the second image stands on the right. They are shaking hands against the backdrop of a spaceship interior.",
                "example_input/gen_tests/gen_res.png"
            ]
        ],
        inputs=[image_uploader_1, image_uploader_2, instruction_text, output_image],
        cache_examples=False,
    )

    run_button.click(
        fn=process_request,
        inputs=[image_uploader_1, image_uploader_2, instruction_text],
        outputs=output_image
    )

if __name__ == "__main__":
    
    print("Launching Gradio Demo...")
    demo.launch(server_name="0.0.0.0", server_port=7861, )