Spaces:
Sleeping
Sleeping
Commit
·
a02a090
1
Parent(s):
e04b291
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,14 +1,33 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
🎥 Video Content Safety Analysis
|
| 4 |
-
|
| 5 |
"""
|
| 6 |
import os
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
| 12 |
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
| 13 |
|
| 14 |
# ZeroGPU装饰器
|
|
@@ -19,7 +38,6 @@ try:
|
|
| 19 |
except ImportError:
|
| 20 |
print("⚠️ ZeroGPU spaces 不可用,使用CPU模式")
|
| 21 |
GPU_AVAILABLE = False
|
| 22 |
-
# 创建空装饰器
|
| 23 |
class spaces:
|
| 24 |
@staticmethod
|
| 25 |
def GPU(func):
|
|
@@ -27,146 +45,568 @@ except ImportError:
|
|
| 27 |
|
| 28 |
# 全局变量
|
| 29 |
model = None
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
def
|
| 33 |
-
"""
|
| 34 |
-
global
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
if model is not None:
|
| 37 |
-
return model,
|
| 38 |
|
| 39 |
try:
|
| 40 |
-
print("🔄
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
except Exception as e:
|
| 49 |
print(f"❌ 模型加载失败: {e}")
|
| 50 |
-
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU if GPU_AVAILABLE else lambda f: f
|
| 53 |
-
def
|
| 54 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 55 |
try:
|
| 56 |
# 加载模型
|
| 57 |
-
|
| 58 |
-
if model is None:
|
| 59 |
-
return "❌ 模型加载失败", "无法评估"
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
print(f"📝 分析指令: {instruction}")
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
-
📋
|
| 69 |
-
-
|
|
|
|
| 70 |
- 分析指令: {instruction}
|
| 71 |
|
| 72 |
-
🔍
|
| 73 |
-
|
| 74 |
-
- 音频内容: 语音转文字结果
|
| 75 |
-
- 情感分析: 积极/中性/消极
|
| 76 |
|
| 77 |
-
|
| 78 |
-
- 暴力内容: 未检测到
|
| 79 |
-
- 不当内容: 未检测到
|
| 80 |
-
- 版权问题: 未检测到
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
"""
|
| 84 |
|
| 85 |
-
|
|
|
|
| 86 |
|
| 87 |
-
return
|
| 88 |
|
| 89 |
except Exception as e:
|
| 90 |
-
error_msg = f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
return error_msg, "⚠️ 错误"
|
| 92 |
|
| 93 |
-
def
|
| 94 |
-
"""
|
| 95 |
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
-
|
| 99 |
-
gr.Markdown("基于MiniGPT4-Video的多模态视频理解与安全检测系统")
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
label="安全评级",
|
| 125 |
-
lines=1
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
gr.Markdown("""
|
| 129 |
-
## 💡 使用说明
|
| 130 |
-
|
| 131 |
-
1. 上传视频文件
|
| 132 |
-
2. 输入分析指令
|
| 133 |
-
3. 点击开始分析
|
| 134 |
-
4. 查看分析结果
|
| 135 |
-
|
| 136 |
-
## ⚠️ 注意事项
|
| 137 |
-
|
| 138 |
-
- ZeroGPU有60秒运行时间限制
|
| 139 |
-
- 建议上传文件小于50MB
|
| 140 |
-
- 首次加载模型需要1-2分钟
|
| 141 |
-
""")
|
| 142 |
-
|
| 143 |
-
# 绑定事件
|
| 144 |
-
analyze_btn.click(
|
| 145 |
-
fn=analyze_video_content,
|
| 146 |
-
inputs=[video_input, instruction_input],
|
| 147 |
-
outputs=[analysis_output, safety_output]
|
| 148 |
-
)
|
| 149 |
|
| 150 |
-
return
|
| 151 |
|
| 152 |
def main():
|
| 153 |
"""主函数"""
|
| 154 |
-
print("🚀
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
# 检查GPU可用性
|
| 157 |
if torch.cuda.is_available():
|
| 158 |
print(f"✅ GPU可用: {torch.cuda.get_device_name(0)}")
|
| 159 |
else:
|
| 160 |
print("⚠️ 使用CPU模式")
|
| 161 |
|
| 162 |
-
#
|
| 163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
-
|
|
|
|
|
|
|
| 166 |
app.launch(
|
|
|
|
| 167 |
server_name="0.0.0.0",
|
| 168 |
server_port=7860,
|
| 169 |
-
share=True,
|
| 170 |
show_error=True
|
| 171 |
)
|
| 172 |
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
🎥 Video Content Safety Analysis - MiniGPT4-Video + 巨量引擎规则集成版
|
| 4 |
+
基于MiniGPT4-Video的真实视频内容分析 + 巨量引擎299条禁投规则检测
|
| 5 |
"""
|
| 6 |
import os
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
| 9 |
+
import gc
|
| 10 |
+
import whisper
|
| 11 |
+
import argparse
|
| 12 |
+
import yaml
|
| 13 |
+
import random
|
| 14 |
+
import numpy as np
|
| 15 |
+
import torch.backends.cudnn as cudnn
|
| 16 |
+
from minigpt4.common.eval_utils import init_model
|
| 17 |
+
from minigpt4.conversation.conversation import CONV_VISION
|
| 18 |
+
import tempfile
|
| 19 |
+
import shutil
|
| 20 |
+
import cv2
|
| 21 |
+
import webvtt
|
| 22 |
+
import moviepy.editor as mp
|
| 23 |
+
from torchvision import transforms
|
| 24 |
+
from datetime import timedelta
|
| 25 |
+
from moviepy.editor import VideoFileClip
|
| 26 |
|
| 27 |
+
# 导入巨量引擎禁投规则引擎
|
| 28 |
+
from prohibited_rules import ProhibitedRulesEngine
|
| 29 |
+
|
| 30 |
+
# 设置中国镜像
|
| 31 |
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
|
| 32 |
|
| 33 |
# ZeroGPU装饰器
|
|
|
|
| 38 |
except ImportError:
|
| 39 |
print("⚠️ ZeroGPU spaces 不可用,使用CPU模式")
|
| 40 |
GPU_AVAILABLE = False
|
|
|
|
| 41 |
class spaces:
|
| 42 |
@staticmethod
|
| 43 |
def GPU(func):
|
|
|
|
| 45 |
|
| 46 |
# 全局变量
|
| 47 |
model = None
|
| 48 |
+
vis_processor = None
|
| 49 |
+
whisper_model = None
|
| 50 |
+
args = None
|
| 51 |
+
seed = 42
|
| 52 |
+
|
| 53 |
+
# 初始化巨量引擎规则引擎
|
| 54 |
+
rules_engine = ProhibitedRulesEngine()
|
| 55 |
+
print("✅ 巨量引擎299条禁投规则引擎初始化完成")
|
| 56 |
+
|
| 57 |
+
# ======================== MiniGPT4-Video 核心函数 ========================
|
| 58 |
+
|
| 59 |
+
def format_timestamp(seconds):
|
| 60 |
+
"""格式化时间戳为VTT格式"""
|
| 61 |
+
td = timedelta(seconds=seconds)
|
| 62 |
+
total_seconds = int(td.total_seconds())
|
| 63 |
+
milliseconds = int(td.microseconds / 1000)
|
| 64 |
+
hours, remainder = divmod(total_seconds, 3600)
|
| 65 |
+
minutes, seconds = divmod(remainder, 60)
|
| 66 |
+
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
|
| 67 |
+
|
| 68 |
+
def extract_video_info(video_path, max_images_length):
|
| 69 |
+
"""提取视频信息"""
|
| 70 |
+
clip = VideoFileClip(video_path)
|
| 71 |
+
total_num_frames = int(clip.duration * clip.fps)
|
| 72 |
+
clip.close()
|
| 73 |
+
sampling_interval = int(total_num_frames / max_images_length)
|
| 74 |
+
if sampling_interval == 0:
|
| 75 |
+
sampling_interval = 1
|
| 76 |
+
return sampling_interval, clip.fps
|
| 77 |
+
|
| 78 |
+
def time_to_milliseconds(time_str):
|
| 79 |
+
"""将时间格式转换为毫秒"""
|
| 80 |
+
h, m, s = map(float, time_str.split(':'))
|
| 81 |
+
return int((h * 3600 + m * 60 + s) * 1000)
|
| 82 |
+
|
| 83 |
+
def extract_subtitles(subtitle_path):
|
| 84 |
+
"""提取字幕"""
|
| 85 |
+
if not subtitle_path or not os.path.exists(subtitle_path):
|
| 86 |
+
return []
|
| 87 |
+
|
| 88 |
+
subtitles = []
|
| 89 |
+
try:
|
| 90 |
+
for caption in webvtt.read(subtitle_path):
|
| 91 |
+
start_ms = time_to_milliseconds(caption.start)
|
| 92 |
+
end_ms = time_to_milliseconds(caption.end)
|
| 93 |
+
text = caption.text.strip().replace('\n', ' ')
|
| 94 |
+
subtitles.append((start_ms, end_ms, text))
|
| 95 |
+
except:
|
| 96 |
+
return []
|
| 97 |
+
return subtitles
|
| 98 |
+
|
| 99 |
+
def find_subtitle(subtitles, frame_count, fps):
|
| 100 |
+
"""查找对应帧的字幕"""
|
| 101 |
+
if not subtitles:
|
| 102 |
+
return None
|
| 103 |
+
|
| 104 |
+
frame_time = (frame_count / fps) * 1000
|
| 105 |
+
left, right = 0, len(subtitles) - 1
|
| 106 |
+
|
| 107 |
+
while left <= right:
|
| 108 |
+
mid = (left + right) // 2
|
| 109 |
+
start, end, subtitle_text = subtitles[mid]
|
| 110 |
+
if start <= frame_time <= end:
|
| 111 |
+
return subtitle_text
|
| 112 |
+
elif frame_time < start:
|
| 113 |
+
right = mid - 1
|
| 114 |
+
else:
|
| 115 |
+
left = mid + 1
|
| 116 |
+
|
| 117 |
+
return None
|
| 118 |
+
|
| 119 |
+
def match_frames_and_subtitles(video_path, subtitles, sampling_interval, max_sub_len, fps, max_frames):
|
| 120 |
+
"""匹配视频帧和字幕"""
|
| 121 |
+
global vis_processor
|
| 122 |
+
|
| 123 |
+
cap = cv2.VideoCapture(video_path)
|
| 124 |
+
images = []
|
| 125 |
+
frame_count = 0
|
| 126 |
+
img_placeholder = ""
|
| 127 |
+
subtitle_text_in_interval = ""
|
| 128 |
+
history_subtitles = {}
|
| 129 |
+
number_of_words = 0
|
| 130 |
+
|
| 131 |
+
transform = transforms.Compose([
|
| 132 |
+
transforms.ToPILImage(),
|
| 133 |
+
])
|
| 134 |
+
|
| 135 |
+
while cap.isOpened():
|
| 136 |
+
ret, frame = cap.read()
|
| 137 |
+
if not ret:
|
| 138 |
+
break
|
| 139 |
+
|
| 140 |
+
if len(subtitles) > 0:
|
| 141 |
+
frame_subtitle = find_subtitle(subtitles, frame_count, fps)
|
| 142 |
+
if frame_subtitle and not history_subtitles.get(frame_subtitle, False):
|
| 143 |
+
subtitle_text_in_interval += frame_subtitle + " "
|
| 144 |
+
history_subtitles[frame_subtitle] = True
|
| 145 |
+
|
| 146 |
+
if frame_count % sampling_interval == 0:
|
| 147 |
+
frame = transform(frame[:,:,::-1]) # 转换为RGB
|
| 148 |
+
frame = vis_processor(frame)
|
| 149 |
+
images.append(frame)
|
| 150 |
+
img_placeholder += '<Img><ImageHere>'
|
| 151 |
+
|
| 152 |
+
if subtitle_text_in_interval != "" and number_of_words < max_sub_len:
|
| 153 |
+
img_placeholder += f'<Cap>{subtitle_text_in_interval}'
|
| 154 |
+
number_of_words += len(subtitle_text_in_interval.split(' '))
|
| 155 |
+
subtitle_text_in_interval = ""
|
| 156 |
+
|
| 157 |
+
frame_count += 1
|
| 158 |
+
if len(images) >= max_frames:
|
| 159 |
+
break
|
| 160 |
+
|
| 161 |
+
cap.release()
|
| 162 |
+
cv2.destroyAllWindows()
|
| 163 |
+
|
| 164 |
+
if len(images) == 0:
|
| 165 |
+
return None, None
|
| 166 |
+
|
| 167 |
+
images = torch.stack(images)
|
| 168 |
+
return images, img_placeholder
|
| 169 |
+
|
| 170 |
+
def extract_audio(video_path, audio_path):
|
| 171 |
+
"""提取音频"""
|
| 172 |
+
video_clip = mp.VideoFileClip(video_path)
|
| 173 |
+
audio_clip = video_clip.audio
|
| 174 |
+
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k", verbose=False, logger=None)
|
| 175 |
+
video_clip.close()
|
| 176 |
+
|
| 177 |
+
def get_subtitles(video_path):
|
| 178 |
+
"""生成字幕"""
|
| 179 |
+
global whisper_model
|
| 180 |
+
|
| 181 |
+
if whisper_model is None:
|
| 182 |
+
return None
|
| 183 |
+
|
| 184 |
+
audio_dir = "workspace/inference_subtitles/mp3"
|
| 185 |
+
subtitle_dir = "workspace/inference_subtitles"
|
| 186 |
+
os.makedirs(subtitle_dir, exist_ok=True)
|
| 187 |
+
os.makedirs(audio_dir, exist_ok=True)
|
| 188 |
+
|
| 189 |
+
video_id = video_path.split('/')[-1].split('.')[0]
|
| 190 |
+
audio_path = f"{audio_dir}/{video_id}.mp3"
|
| 191 |
+
subtitle_path = f"{subtitle_dir}/{video_id}.vtt"
|
| 192 |
+
|
| 193 |
+
# 如果字幕已存在,直接返回
|
| 194 |
+
if os.path.exists(subtitle_path):
|
| 195 |
+
return subtitle_path
|
| 196 |
+
|
| 197 |
+
try:
|
| 198 |
+
extract_audio(video_path, audio_path)
|
| 199 |
+
result = whisper_model.transcribe(audio_path, language="en")
|
| 200 |
+
|
| 201 |
+
# 创建VTT文件
|
| 202 |
+
with open(subtitle_path, "w", encoding="utf-8") as vtt_file:
|
| 203 |
+
vtt_file.write("WEBVTT\n\n")
|
| 204 |
+
for segment in result['segments']:
|
| 205 |
+
start = format_timestamp(segment['start'])
|
| 206 |
+
end = format_timestamp(segment['end'])
|
| 207 |
+
text = segment['text']
|
| 208 |
+
vtt_file.write(f"{start} --> {end}\n{text}\n\n")
|
| 209 |
+
|
| 210 |
+
return subtitle_path
|
| 211 |
+
except Exception as e:
|
| 212 |
+
print(f"字幕生成错误: {e}")
|
| 213 |
+
return None
|
| 214 |
|
| 215 |
+
def prepare_input(video_path, subtitle_path, instruction):
|
| 216 |
+
"""准备输入"""
|
| 217 |
+
global args
|
| 218 |
+
|
| 219 |
+
# 根据模型设置参数
|
| 220 |
+
if args and "mistral" in args.ckpt:
|
| 221 |
+
max_frames = 90
|
| 222 |
+
max_sub_len = 800
|
| 223 |
+
else:
|
| 224 |
+
max_frames = 45
|
| 225 |
+
max_sub_len = 400
|
| 226 |
+
|
| 227 |
+
sampling_interval, fps = extract_video_info(video_path, max_frames)
|
| 228 |
+
subtitles = extract_subtitles(subtitle_path)
|
| 229 |
+
frames_features, input_placeholder = match_frames_and_subtitles(
|
| 230 |
+
video_path, subtitles, sampling_interval, max_sub_len, fps, max_frames
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
if input_placeholder:
|
| 234 |
+
input_placeholder += "\n" + instruction
|
| 235 |
+
else:
|
| 236 |
+
input_placeholder = instruction
|
| 237 |
+
|
| 238 |
+
return frames_features, input_placeholder
|
| 239 |
+
|
| 240 |
+
def model_generate(*model_args, **kwargs):
|
| 241 |
+
"""模型生成函数"""
|
| 242 |
+
global model
|
| 243 |
+
|
| 244 |
+
with model.maybe_autocast():
|
| 245 |
+
output = model.llama_model.generate(*model_args, **kwargs)
|
| 246 |
+
return output
|
| 247 |
+
|
| 248 |
+
def generate_prediction(video_path, instruction, gen_subtitles=True, stream=False):
|
| 249 |
+
"""生成预测结果"""
|
| 250 |
+
global model, args, seed
|
| 251 |
+
|
| 252 |
+
if gen_subtitles:
|
| 253 |
+
subtitle_path = get_subtitles(video_path)
|
| 254 |
+
else:
|
| 255 |
+
subtitle_path = None
|
| 256 |
+
|
| 257 |
+
prepared_images, prepared_instruction = prepare_input(video_path, subtitle_path, instruction)
|
| 258 |
+
|
| 259 |
+
if prepared_images is None:
|
| 260 |
+
return "视频无法打开,请检查视频路径"
|
| 261 |
+
|
| 262 |
+
length = len(prepared_images)
|
| 263 |
+
prepared_images = prepared_images.unsqueeze(0)
|
| 264 |
+
|
| 265 |
+
conv = CONV_VISION.copy()
|
| 266 |
+
conv.system = ""
|
| 267 |
+
conv.append_message(conv.roles[0], prepared_instruction)
|
| 268 |
+
conv.append_message(conv.roles[1], None)
|
| 269 |
+
prompt = [conv.get_prompt()]
|
| 270 |
+
|
| 271 |
+
# 设置随机种子
|
| 272 |
+
setup_seeds(seed)
|
| 273 |
+
|
| 274 |
+
try:
|
| 275 |
+
answers = model.generate(
|
| 276 |
+
prepared_images,
|
| 277 |
+
prompt,
|
| 278 |
+
max_new_tokens=args.max_new_tokens if args else 512,
|
| 279 |
+
do_sample=True,
|
| 280 |
+
lengths=[length],
|
| 281 |
+
num_beams=1
|
| 282 |
+
)
|
| 283 |
+
return answers[0]
|
| 284 |
+
except Exception as e:
|
| 285 |
+
return f"生成预测时出错: {str(e)}"
|
| 286 |
+
|
| 287 |
+
# ======================== 巨量引擎规则检测函数 ========================
|
| 288 |
+
|
| 289 |
+
def format_violations_report(violations_result):
|
| 290 |
+
"""格式化违规检测报告"""
|
| 291 |
+
if not violations_result["has_violations"]:
|
| 292 |
+
return """
|
| 293 |
+
🛡️ **巨量引擎规则检测结果**: ✅ 无违规内容
|
| 294 |
+
- 已检测规则: 299条巨量引擎禁投规则
|
| 295 |
+
- 检测维度: 低危(P1) + 中危(P2) + 高危(P3)
|
| 296 |
+
- 检测结果: 内容符合平台规范
|
| 297 |
+
"""
|
| 298 |
+
|
| 299 |
+
report = f"""
|
| 300 |
+
🚨 **巨量引擎规则检测结果**: ⚠️ 发现 {violations_result["total_violations"]} 项违规
|
| 301 |
+
|
| 302 |
+
📊 **违规统计**:
|
| 303 |
+
- 🔴 高危违规(P3): {violations_result["high_risk"]["count"]} 项
|
| 304 |
+
- 🟡 中危违规(P2): {violations_result["medium_risk"]["count"]} 项
|
| 305 |
+
- 🟠 低危违规(P1): {violations_result["low_risk"]["count"]} 项
|
| 306 |
+
|
| 307 |
+
📋 **详细违规列表**:
|
| 308 |
+
"""
|
| 309 |
+
|
| 310 |
+
# 按风险等级排序显���违规
|
| 311 |
+
for violation in sorted(violations_result["all_violations"],
|
| 312 |
+
key=lambda x: {"P3": 3, "P2": 2, "P1": 1}[x["risk_level"]],
|
| 313 |
+
reverse=True):
|
| 314 |
+
risk_icon = {"P3": "🚨", "P2": "⚠️", "P1": "💭"}[violation["risk_level"]]
|
| 315 |
+
report += f"""
|
| 316 |
+
{risk_icon} **{violation["risk_level"]} - {violation["category"]}**
|
| 317 |
+
规则: {violation["description"]}
|
| 318 |
+
匹配词: "{violation["matched_keyword"]}"
|
| 319 |
+
规则ID: {violation["rule_id"]}
|
| 320 |
+
"""
|
| 321 |
+
|
| 322 |
+
return report
|
| 323 |
+
|
| 324 |
+
def get_overall_risk_level(violations_result):
|
| 325 |
+
"""获取综合风险等级"""
|
| 326 |
+
if not violations_result["has_violations"]:
|
| 327 |
+
return "✅ P3 (安全) - 内容健康,符合平台规范"
|
| 328 |
+
|
| 329 |
+
if violations_result["high_risk"]["count"] > 0:
|
| 330 |
+
return f"🚨 P0 (极高危) - 发现 {violations_result['high_risk']['count']} 项高危违规,禁止投放"
|
| 331 |
+
elif violations_result["medium_risk"]["count"] > 2:
|
| 332 |
+
return f"⚠️ P1 (高危) - 发现 {violations_result['medium_risk']['count']} 项中危违规,需严格审核"
|
| 333 |
+
elif violations_result["medium_risk"]["count"] > 0:
|
| 334 |
+
return f"⚠️ P1 (中危) - 发现 {violations_result['medium_risk']['count']} 项中危违规,需要审核"
|
| 335 |
+
else:
|
| 336 |
+
return f"⚡ P2 (低危) - 发现 {violations_result['low_risk']['count']} 项低危违规,建议关注"
|
| 337 |
+
|
| 338 |
+
# ======================== 应用主要函数 ========================
|
| 339 |
+
|
| 340 |
+
def setup_seeds(seed):
|
| 341 |
+
"""设置随机种子"""
|
| 342 |
+
random.seed(seed)
|
| 343 |
+
np.random.seed(seed)
|
| 344 |
+
torch.manual_seed(seed)
|
| 345 |
+
torch.cuda.manual_seed(seed)
|
| 346 |
+
cudnn.benchmark = False
|
| 347 |
+
cudnn.deterministic = True
|
| 348 |
+
|
| 349 |
+
def optimize_gpu_memory():
|
| 350 |
+
"""GPU内存优化"""
|
| 351 |
+
print("🔍 开始GPU内存优化...")
|
| 352 |
+
|
| 353 |
+
# 设置环境变量优化内存分配
|
| 354 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:256,garbage_collection_threshold:0.6'
|
| 355 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
| 356 |
+
|
| 357 |
+
if torch.cuda.is_available():
|
| 358 |
+
print(f"🔍 GPU: {torch.cuda.get_device_name(0)}")
|
| 359 |
+
print(f"💾 总显存: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
|
| 360 |
+
|
| 361 |
+
# 强制清理所有GPU缓存
|
| 362 |
+
torch.cuda.empty_cache()
|
| 363 |
+
torch.cuda.ipc_collect()
|
| 364 |
+
gc.collect()
|
| 365 |
+
|
| 366 |
+
# 设置内存增长策略
|
| 367 |
+
torch.backends.cudnn.benchmark = False
|
| 368 |
+
torch.backends.cudnn.deterministic = True
|
| 369 |
+
|
| 370 |
+
print(f"💾 清理后可用显存: {(torch.cuda.get_device_properties(0).total_memory - torch.cuda.memory_allocated(0)) / 1024**3:.1f} GB")
|
| 371 |
+
|
| 372 |
+
def get_arguments():
|
| 373 |
+
"""获取参数配置"""
|
| 374 |
+
parser = argparse.ArgumentParser(description="MiniGPT4-Video参数")
|
| 375 |
+
parser.add_argument("--cfg-path", help="配置文件路径",
|
| 376 |
+
default="test_configs/minigpt4_optimized_config.yaml")
|
| 377 |
+
parser.add_argument("--ckpt", type=str,
|
| 378 |
+
default='checkpoints/video_llama_checkpoint_last.pth',
|
| 379 |
+
help="模型检查点路径")
|
| 380 |
+
parser.add_argument("--max_new_tokens", type=int, default=512,
|
| 381 |
+
help="最大生成token数")
|
| 382 |
+
parser.add_argument("--lora_r", type=int, default=96, help="LoRA rank")
|
| 383 |
+
parser.add_argument("--lora_alpha", type=int, default=24, help="LoRA alpha")
|
| 384 |
+
parser.add_argument("--options", nargs="+", help="覆盖配置选项")
|
| 385 |
+
return parser.parse_args()
|
| 386 |
+
|
| 387 |
+
def load_minigpt4_model():
|
| 388 |
+
"""加载MiniGPT4-Video模型"""
|
| 389 |
+
global model, vis_processor, whisper_model, args, seed
|
| 390 |
|
| 391 |
if model is not None:
|
| 392 |
+
return model, vis_processor, whisper_model
|
| 393 |
|
| 394 |
try:
|
| 395 |
+
print("🔄 正在加载MiniGPT4-Video模型...")
|
| 396 |
+
|
| 397 |
+
# 获取参数
|
| 398 |
+
args = get_arguments()
|
| 399 |
+
|
| 400 |
+
# 加载配置
|
| 401 |
+
config_path = args.cfg_path
|
| 402 |
+
if not os.path.exists(config_path):
|
| 403 |
+
config_path = "test_configs/llama2_test_config.yaml" # 回退到默认配置
|
| 404 |
+
|
| 405 |
+
with open(config_path) as file:
|
| 406 |
+
config = yaml.load(file, Loader=yaml.FullLoader)
|
| 407 |
+
|
| 408 |
+
seed = config['run']['seed']
|
| 409 |
+
setup_seeds(seed)
|
| 410 |
|
| 411 |
+
# GPU内存优化
|
| 412 |
+
optimize_gpu_memory()
|
| 413 |
|
| 414 |
+
print("🚀 开始初始化MiniGPT4-Video模型...")
|
| 415 |
+
model, vis_processor, whisper_gpu_id, minigpt4_gpu_id, answer_module_gpu_id = init_model(args)
|
| 416 |
+
|
| 417 |
+
# 清理缓存
|
| 418 |
+
if torch.cuda.is_available():
|
| 419 |
+
torch.cuda.empty_cache()
|
| 420 |
+
print(f"💾 模型加载后显存使用: {torch.cuda.memory_allocated(0) / 1024**3:.1f} GB")
|
| 421 |
+
|
| 422 |
+
print("🚀 开始初始化Whisper模型...")
|
| 423 |
+
whisper_model = whisper.load_model("base").to(f"cuda:{whisper_gpu_id}" if torch.cuda.is_available() else "cpu")
|
| 424 |
+
|
| 425 |
+
if torch.cuda.is_available():
|
| 426 |
+
print(f"💾 全部加载后显存使用: {torch.cuda.memory_allocated(0) / 1024**3:.1f} GB")
|
| 427 |
+
|
| 428 |
+
print("✅ 所有模型加载完成!")
|
| 429 |
+
return model, vis_processor, whisper_model
|
| 430 |
|
| 431 |
except Exception as e:
|
| 432 |
print(f"❌ 模型加载失败: {e}")
|
| 433 |
+
print("🔄 回退到模拟模式...")
|
| 434 |
+
return None, None, None
|
| 435 |
|
| 436 |
@spaces.GPU if GPU_AVAILABLE else lambda f: f
|
| 437 |
+
def analyze_video_with_minigpt4(video_file, instruction):
|
| 438 |
+
"""使用MiniGPT4-Video分析视频内容并进行巨量引擎规则检测"""
|
| 439 |
+
if video_file is None:
|
| 440 |
+
return "❌ 请上传视频文件", "无法评估"
|
| 441 |
+
|
| 442 |
try:
|
| 443 |
# 加载模型
|
| 444 |
+
model_loaded, vis_proc, whisper_loaded = load_minigpt4_model()
|
|
|
|
|
|
|
| 445 |
|
| 446 |
+
if model_loaded is None:
|
| 447 |
+
# 模拟模式
|
| 448 |
+
return f"""
|
| 449 |
+
🎬 **视频内容分析结果 (模拟模式)**
|
| 450 |
+
|
| 451 |
+
📋 **基本信息**:
|
| 452 |
+
- 视频文件: {video_file}
|
| 453 |
+
- 分析指令: {instruction}
|
| 454 |
+
|
| 455 |
+
⚠️ **注意**: 当前运行在模拟模式,真实模型加载失败
|
| 456 |
+
请检查模型文件和配置是否正确
|
| 457 |
+
|
| 458 |
+
🛡️ **巨量引擎规则检测**: 仅在真实模式下可用
|
| 459 |
+
""", "⚠️ 模拟模式"
|
| 460 |
+
|
| 461 |
+
print(f"🔄 开始分析视频: {video_file}")
|
| 462 |
print(f"📝 分析指令: {instruction}")
|
| 463 |
|
| 464 |
+
# 复制视频到临时路径(如果需要)
|
| 465 |
+
temp_video_path = video_file
|
| 466 |
+
if not os.path.exists(video_file):
|
| 467 |
+
# 如果是Gradio的临时文件,复制到工作目录
|
| 468 |
+
temp_dir = "workspace/tmp"
|
| 469 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 470 |
+
temp_video_path = os.path.join(temp_dir, "analysis_video.mp4")
|
| 471 |
+
shutil.copy2(video_file, temp_video_path)
|
| 472 |
+
|
| 473 |
+
# 使用MiniGPT4-Video进行真实分析
|
| 474 |
+
if not instruction or instruction.strip() == "":
|
| 475 |
+
instruction = "请详细分析这个视频的内容,包括场景、人物、动作、对话等,并描述所有可见和可听的元素。"
|
| 476 |
+
|
| 477 |
+
# 调用MiniGPT4-Video的生成函数
|
| 478 |
+
prediction = generate_prediction(
|
| 479 |
+
video_path=temp_video_path,
|
| 480 |
+
instruction=instruction,
|
| 481 |
+
gen_subtitles=True, # 生成字幕
|
| 482 |
+
stream=False
|
| 483 |
+
)
|
| 484 |
+
|
| 485 |
+
# 🚨 巨量引擎规则检测 🚨
|
| 486 |
+
print("🔍 开始巨量引擎299条规则检测...")
|
| 487 |
+
violations_result = rules_engine.check_all_content(prediction, instruction)
|
| 488 |
+
|
| 489 |
+
# 格式化完整分析报告
|
| 490 |
+
enhanced_result = f"""
|
| 491 |
+
🎬 **MiniGPT4-Video 视频内容分析 + 巨量引擎规则检测报告**
|
| 492 |
|
| 493 |
+
📋 **基本信息**:
|
| 494 |
+
- 视频文件: {os.path.basename(video_file)}
|
| 495 |
+
- 分析设备: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'CPU模式'}
|
| 496 |
- 分析指令: {instruction}
|
| 497 |
|
| 498 |
+
🔍 **视频内容描述**:
|
| 499 |
+
{prediction}
|
|
|
|
|
|
|
| 500 |
|
| 501 |
+
{format_violations_report(violations_result)}
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
+
📊 **技术信息**:
|
| 504 |
+
- 内容理解: MiniGPT4-Video + Whisper
|
| 505 |
+
- 规则引擎: 巨量引擎299条禁投规则
|
| 506 |
+
- 检测等级: P1(低危) + P2(中危) + P3(高危)
|
| 507 |
+
- 分析模式: 多模态理解 (视觉+语音+文本)
|
| 508 |
+
|
| 509 |
+
💡 **说明**:
|
| 510 |
+
基于MiniGPT4-Video的深度内容理解,结合巨量引擎完整禁投规则库进行专业违规检测。
|
| 511 |
"""
|
| 512 |
|
| 513 |
+
# 获取综合风险等级
|
| 514 |
+
safety_score = get_overall_risk_level(violations_result)
|
| 515 |
|
| 516 |
+
return enhanced_result, safety_score
|
| 517 |
|
| 518 |
except Exception as e:
|
| 519 |
+
error_msg = f"""
|
| 520 |
+
❌ **分析过程中出错**
|
| 521 |
+
|
| 522 |
+
错误信息: {str(e)}
|
| 523 |
+
|
| 524 |
+
🔄 **可能的解决方案**:
|
| 525 |
+
1. 检查视频文件格式 (建议MP4)
|
| 526 |
+
2. 确认模型文件是否正确加载
|
| 527 |
+
3. 检查GPU内存是否充足
|
| 528 |
+
4. 验证配置文件路径
|
| 529 |
+
|
| 530 |
+
💡 **提示**: 如果问题持续,请检查模型和依赖项安装
|
| 531 |
+
"""
|
| 532 |
return error_msg, "⚠️ 错误"
|
| 533 |
|
| 534 |
+
def create_app():
|
| 535 |
+
"""��建Gradio应用"""
|
| 536 |
|
| 537 |
+
interface = gr.Interface(
|
| 538 |
+
fn=analyze_video_with_minigpt4,
|
| 539 |
+
inputs=[
|
| 540 |
+
gr.Video(label="上传视频文件"),
|
| 541 |
+
gr.Textbox(
|
| 542 |
+
label="分析指令",
|
| 543 |
+
value="请详细分析这个视频的内容,包括场景、人物、动作、对话等,并描述所有可见和可听的元素。",
|
| 544 |
+
placeholder="输入您希望AI如何分析这个视频...",
|
| 545 |
+
lines=3
|
| 546 |
+
)
|
| 547 |
+
],
|
| 548 |
+
outputs=[
|
| 549 |
+
gr.Textbox(label="MiniGPT4-Video 内容分析 + 巨量引擎规则检测", lines=20),
|
| 550 |
+
gr.Textbox(label="巨量引擎风险评级")
|
| 551 |
+
],
|
| 552 |
+
title="🎥 智能视频内容安全分析 - MiniGPT4-Video + 巨量引擎",
|
| 553 |
+
description="""
|
| 554 |
+
## 🎬 基于MiniGPT4-Video + 巨量引擎299条禁投规则的专业视频安全检测系统
|
| 555 |
|
| 556 |
+
⚡ **ZeroGPU加速** | 🎬 **MiniGPT4-Video** | 🎙️ **Whisper语音** | 🛡️ **巨量引擎299条规则**
|
|
|
|
| 557 |
|
| 558 |
+
**🔥 核心功能:**
|
| 559 |
+
- 🎞️ **深度视频理解**: MiniGPT4-Video多模态分析
|
| 560 |
+
- 🎙️ **语音转文字**: Whisper自动生成字幕
|
| 561 |
+
- 🛡️ **专业违规检测**: 巨量引擎完整禁投规则库
|
| 562 |
+
- 📊 **智能风险评级**: P0-P3四级风险等级
|
| 563 |
+
|
| 564 |
+
**🎯 检测维度:**
|
| 565 |
+
- **高危(P3)**: 违法出版物、烟草、医疗等严重违规
|
| 566 |
+
- **中危(P2)**: 赌博周边、房地产、金融等中等风险
|
| 567 |
+
- **低危(P1)**: 化妆品、汽车、游戏等轻微风险
|
| 568 |
+
|
| 569 |
+
**📋 规则覆盖:**
|
| 570 |
+
涵盖化妆品类、汽车类、游戏类、赌博类、房地产类、工具软件类、教育培训类、
|
| 571 |
+
金融类、医疗类、烟草类等全部299条巨量引擎禁投规则
|
| 572 |
+
""",
|
| 573 |
+
examples=[
|
| 574 |
+
[None, "分析这个视频是否包含禁投内容"],
|
| 575 |
+
[None, "检测视频中是否有巨量引擎禁止的产品或服务"],
|
| 576 |
+
[None, "评估视频内容的投放风险等级"],
|
| 577 |
+
[None, "详细描述视频内容并进行合规检查"]
|
| 578 |
+
],
|
| 579 |
+
cache_examples=False
|
| 580 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 581 |
|
| 582 |
+
return interface
|
| 583 |
|
| 584 |
def main():
|
| 585 |
"""主函数"""
|
| 586 |
+
print("🚀 启动MiniGPT4-Video + 巨量引擎视频安全分析应用")
|
| 587 |
+
print("🎬 MiniGPT4-Video: 深度视频内容理解")
|
| 588 |
+
print("🛡️ 巨量引擎: 299条禁投规则检测")
|
| 589 |
|
|
|
|
| 590 |
if torch.cuda.is_available():
|
| 591 |
print(f"✅ GPU可用: {torch.cuda.get_device_name(0)}")
|
| 592 |
else:
|
| 593 |
print("⚠️ 使用CPU模式")
|
| 594 |
|
| 595 |
+
# 创建必要的目录
|
| 596 |
+
os.makedirs("workspace/tmp", exist_ok=True)
|
| 597 |
+
os.makedirs("workspace/inference_subtitles", exist_ok=True)
|
| 598 |
+
os.makedirs("workspace/inference_subtitles/mp3", exist_ok=True)
|
| 599 |
+
|
| 600 |
+
print("📁 工作目录准备完成")
|
| 601 |
+
print("🚀 正在启动Gradio应用...")
|
| 602 |
|
| 603 |
+
app = create_app()
|
| 604 |
+
|
| 605 |
+
# 启动应用
|
| 606 |
app.launch(
|
| 607 |
+
share=True,
|
| 608 |
server_name="0.0.0.0",
|
| 609 |
server_port=7860,
|
|
|
|
| 610 |
show_error=True
|
| 611 |
)
|
| 612 |
|