Spaces:
Running
on
Zero
Running
on
Zero
Linoy Tsaban
commited on
Commit
·
4e5195b
1
Parent(s):
ba508b5
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,14 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
| 4 |
-
from utils import *
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
|
| 11 |
# load sd model
|
| 12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
-
model_id = "stabilityai/stable-diffusion-2-1-base"
|
| 14 |
-
inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
| 15 |
-
inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 16 |
|
| 17 |
def randomize_seed_fn():
|
| 18 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
|
@@ -21,69 +17,173 @@ def randomize_seed_fn():
|
|
| 21 |
def reset_do_inversion():
|
| 22 |
return True
|
| 23 |
|
| 24 |
-
def get_example():
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
]
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
frames,
|
| 40 |
latents,
|
| 41 |
inverted_latents,
|
| 42 |
seed,
|
| 43 |
randomize_seed,
|
| 44 |
do_inversion,
|
| 45 |
-
height:int = 512,
|
| 46 |
-
weidth: int = 512,
|
| 47 |
# save_dir: str = "latents",
|
| 48 |
steps: int = 500,
|
| 49 |
batch_size: int = 8,
|
| 50 |
n_frames: int = 40,
|
| 51 |
inversion_prompt:str = '',
|
| 52 |
-
|
| 53 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
if do_inversion or randomize_seed:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
|
| 58 |
-
frames = video_to_frames(video, img_size=(height, weidth))
|
| 59 |
-
# data_path = os.path.join('data', Path(video_path).stem)
|
| 60 |
-
|
| 61 |
-
toy_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 62 |
-
toy_scheduler.set_timesteps(save_steps)
|
| 63 |
-
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=save_steps,
|
| 64 |
-
strength=1.0,
|
| 65 |
-
device=device)
|
| 66 |
if randomize_seed:
|
| 67 |
seed = randomize_seed_fn()
|
| 68 |
seed_everything(seed)
|
| 69 |
|
| 70 |
-
frames, latents =
|
| 71 |
-
|
| 72 |
-
inverted_latents = extract_latents(inv_pipe, num_steps = steps,
|
| 73 |
-
latent_frames = latents,
|
| 74 |
-
batch_size = batch_size,
|
| 75 |
-
timesteps_to_save = timesteps_to_save,
|
| 76 |
-
inversion_prompt = inversion_prompt,)
|
| 77 |
frames = gr.State(value=frames)
|
| 78 |
latents = gr.State(value=latents)
|
| 79 |
-
inverted_latents = gr.State(value=
|
| 80 |
do_inversion = False
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
return frames, latents, inverted_latents, do_inversion, output_vid
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
########
|
| 89 |
# demo #
|
|
@@ -107,14 +207,14 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 107 |
do_inversion = gr.State(value=True)
|
| 108 |
|
| 109 |
with gr.Row():
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
|
| 116 |
with gr.Row():
|
| 117 |
-
|
| 118 |
label="Describe your edited video",
|
| 119 |
max_lines=1, value=""
|
| 120 |
)
|
|
@@ -132,33 +232,41 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 132 |
run_button = gr.Button("Edit your video!", visible=True)
|
| 133 |
|
| 134 |
with gr.Accordion("Advanced Options", open=False):
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
|
| 152 |
-
|
| 153 |
fn = reset_do_inversion,
|
| 154 |
outputs = [do_inversion],
|
| 155 |
queue = False)
|
| 156 |
|
| 157 |
-
|
| 158 |
fn = reset_do_inversion,
|
| 159 |
outputs = [do_inversion],
|
| 160 |
queue = False).then(fn = preprocess_and_invert,
|
| 161 |
-
inputs = [
|
| 162 |
frames,
|
| 163 |
latents,
|
| 164 |
inverted_latents,
|
|
@@ -173,19 +281,38 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 173 |
outputs = [frames,
|
| 174 |
latents,
|
| 175 |
inverted_latents,
|
| 176 |
-
do_inversion
|
| 177 |
-
output_vid
|
| 178 |
|
| 179 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
gr.Examples(
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
)
|
| 187 |
|
| 188 |
|
| 189 |
|
| 190 |
demo.queue()
|
| 191 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
| 4 |
+
# from utils import *
|
| 5 |
+
from diffusers.utils import export_to_video
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# load sd model
|
| 8 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 9 |
+
# model_id = "stabilityai/stable-diffusion-2-1-base"
|
| 10 |
+
# inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
| 11 |
+
# inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 12 |
|
| 13 |
def randomize_seed_fn():
|
| 14 |
seed = random.randint(0, np.iinfo(np.int32).max)
|
|
|
|
| 17 |
def reset_do_inversion():
|
| 18 |
return True
|
| 19 |
|
| 20 |
+
# def get_example():
|
| 21 |
+
# case = [
|
| 22 |
+
# [
|
| 23 |
+
# 'examples/wolf.mp4',
|
| 24 |
|
| 25 |
+
# ],
|
| 26 |
+
# [
|
| 27 |
+
# 'examples/woman-running.mp4',
|
| 28 |
|
| 29 |
+
# ],
|
| 30 |
+
|
| 31 |
+
# ]
|
| 32 |
+
# return case
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def prep(config):
|
| 36 |
+
# timesteps to save
|
| 37 |
+
if config["sd_version"] == '2.1':
|
| 38 |
+
model_key = "stabilityai/stable-diffusion-2-1-base"
|
| 39 |
+
elif config["sd_version"] == '2.0':
|
| 40 |
+
model_key = "stabilityai/stable-diffusion-2-base"
|
| 41 |
+
elif config["sd_version"] == '1.5' or config["sd_version"] == 'ControlNet':
|
| 42 |
+
model_key = "runwayml/stable-diffusion-v1-5"
|
| 43 |
+
elif config["sd_version"] == 'depth':
|
| 44 |
+
model_key = "stabilityai/stable-diffusion-2-depth"
|
| 45 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_key, subfolder="scheduler")
|
| 46 |
+
toy_scheduler.set_timesteps(config["save_steps"])
|
| 47 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=config["save_steps"],
|
| 48 |
+
strength=1.0,
|
| 49 |
+
device=device)
|
| 50 |
|
| 51 |
+
# seed_everything(config["seed"])
|
| 52 |
+
if not config["frames"]: # original non demo setting
|
| 53 |
+
save_path = os.path.join(config["save_dir"],
|
| 54 |
+
f'sd_{config["sd_version"]}',
|
| 55 |
+
Path(config["data_path"]).stem,
|
| 56 |
+
f'steps_{config["steps"]}',
|
| 57 |
+
f'nframes_{config["n_frames"]}')
|
| 58 |
+
os.makedirs(os.path.join(save_path, f'latents'), exist_ok=True)
|
| 59 |
+
add_dict_to_yaml_file(os.path.join(config["save_dir"], 'inversion_prompts.yaml'), Path(config["data_path"]).stem, config["inversion_prompt"])
|
| 60 |
+
# save inversion prompt in a txt file
|
| 61 |
+
with open(os.path.join(save_path, 'inversion_prompt.txt'), 'w') as f:
|
| 62 |
+
f.write(config["inversion_prompt"])
|
| 63 |
+
else:
|
| 64 |
+
save_path = None
|
| 65 |
|
| 66 |
+
model = Preprocess(device, config)
|
| 67 |
+
print(type(model.config["batch_size"]))
|
| 68 |
+
frames, latents, total_inverted_latents, rgb_reconstruction = model.extract_latents(
|
| 69 |
+
num_steps=model.config["steps"],
|
| 70 |
+
save_path=save_path,
|
| 71 |
+
batch_size=model.config["batch_size"],
|
| 72 |
+
timesteps_to_save=timesteps_to_save,
|
| 73 |
+
inversion_prompt=model.config["inversion_prompt"],
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
return frames, latents, total_inverted_latents, rgb_reconstruction
|
| 78 |
+
|
| 79 |
+
def preprocess_and_invert(input_video,
|
| 80 |
frames,
|
| 81 |
latents,
|
| 82 |
inverted_latents,
|
| 83 |
seed,
|
| 84 |
randomize_seed,
|
| 85 |
do_inversion,
|
|
|
|
|
|
|
| 86 |
# save_dir: str = "latents",
|
| 87 |
steps: int = 500,
|
| 88 |
batch_size: int = 8,
|
| 89 |
n_frames: int = 40,
|
| 90 |
inversion_prompt:str = '',
|
| 91 |
+
|
| 92 |
):
|
| 93 |
+
sd_version = "2.1"
|
| 94 |
+
height = 512
|
| 95 |
+
weidth: int = 512
|
| 96 |
+
save_steps = 50
|
| 97 |
|
| 98 |
if do_inversion or randomize_seed:
|
| 99 |
+
preprocess_config = {}
|
| 100 |
+
preprocess_config['H'] = height
|
| 101 |
+
preprocess_config['W'] = weidth
|
| 102 |
+
preprocess_config['save_dir'] = 'latents'
|
| 103 |
+
preprocess_config['sd_version'] = sd_version
|
| 104 |
+
preprocess_config['steps'] = steps
|
| 105 |
+
preprocess_config['batch_size'] = batch_size
|
| 106 |
+
preprocess_config['save_steps'] = save_steps
|
| 107 |
+
preprocess_config['n_frames'] = n_frames
|
| 108 |
+
preprocess_config['seed'] = seed
|
| 109 |
+
preprocess_config['inversion_prompt'] = inversion_prompt
|
| 110 |
+
preprocess_config['frames'] = video_to_frames(input_video)
|
| 111 |
+
preprocess_config['data_path'] = input_video.split(".")[0]
|
| 112 |
|
| 113 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
if randomize_seed:
|
| 115 |
seed = randomize_seed_fn()
|
| 116 |
seed_everything(seed)
|
| 117 |
|
| 118 |
+
frames, latents, total_inverted_latents, rgb_reconstruction = prep(preprocess_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
frames = gr.State(value=frames)
|
| 120 |
latents = gr.State(value=latents)
|
| 121 |
+
inverted_latents = gr.State(value=total_inverted_latents)
|
| 122 |
do_inversion = False
|
| 123 |
|
| 124 |
+
return frames, latents, inverted_latents, do_inversion
|
| 125 |
+
|
|
|
|
| 126 |
|
| 127 |
+
def edit_with_pnp(input_video,
|
| 128 |
+
frames,
|
| 129 |
+
latents,
|
| 130 |
+
inverted_latents,
|
| 131 |
+
seed,
|
| 132 |
+
randomize_seed,
|
| 133 |
+
do_inversion,
|
| 134 |
+
steps,
|
| 135 |
+
prompt: str = "a marble sculpture of a woman running, Venus de Milo",
|
| 136 |
+
# negative_prompt: str = "ugly, blurry, low res, unrealistic, unaesthetic",
|
| 137 |
+
pnp_attn_t: float = 0.5,
|
| 138 |
+
pnp_f_t: float = 0.8,
|
| 139 |
+
batch_size: int = 8, #needs to be the same as for preprocess
|
| 140 |
+
n_frames: int = 40,#needs to be the same as for preprocess
|
| 141 |
+
n_timesteps: int = 50,
|
| 142 |
+
gudiance_scale: float = 7.5,
|
| 143 |
+
inversion_prompt: str = ""#needs to be the same as for preprocess
|
| 144 |
+
):
|
| 145 |
+
config = {}
|
| 146 |
+
|
| 147 |
+
config["sd_version"] = "2.1"
|
| 148 |
+
config["device"] = device
|
| 149 |
+
config["n_timesteps"] = n_timesteps
|
| 150 |
+
config["n_frames"] = n_frames
|
| 151 |
+
config["batch_size"] = batch_size
|
| 152 |
+
config["guidance_scale"] = gudiance_scale
|
| 153 |
+
config["prompt"] = prompt
|
| 154 |
+
config["negative_prompt"] = "ugly, blurry, low res, unrealistic, unaesthetic",
|
| 155 |
+
config["pnp_attn_t"] = pnp_attn_t
|
| 156 |
+
config["pnp_f_t"] = pnp_f_t
|
| 157 |
+
config["pnp_inversion_prompt"] = inversion_prompt
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
if do_inversion:
|
| 161 |
+
frames, latents, inverted_latents, do_inversion = preprocess_and_invert(
|
| 162 |
+
input_video,
|
| 163 |
+
frames,
|
| 164 |
+
latents,
|
| 165 |
+
inverted_latents,
|
| 166 |
+
seed,
|
| 167 |
+
randomize_seed,
|
| 168 |
+
do_inversion,
|
| 169 |
+
steps,
|
| 170 |
+
batch_size,
|
| 171 |
+
n_frames,
|
| 172 |
+
inversion_prompt)
|
| 173 |
+
do_inversion = False
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
if randomize_seed:
|
| 177 |
+
seed = randomize_seed_fn()
|
| 178 |
+
seed_everything(seed)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
editor = TokenFlow(config=config, frames=frames.value, inverted_latents=inverted_latents.value)
|
| 182 |
+
edited_frames = editor.edit_video()
|
| 183 |
|
| 184 |
+
save_video(edited_frames, 'tokenflow_PnP_fps_30.mp4', fps=30)
|
| 185 |
+
# path = export_to_video(edited_frames)
|
| 186 |
+
return 'tokenflow_PnP_fps_30.mp4', frames, latents, inverted_latents, do_inversion
|
| 187 |
|
| 188 |
########
|
| 189 |
# demo #
|
|
|
|
| 207 |
do_inversion = gr.State(value=True)
|
| 208 |
|
| 209 |
with gr.Row():
|
| 210 |
+
input_video = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
|
| 211 |
+
output_video = gr.Video(label="Edited Video", interactive=False, elem_id="output_video")
|
| 212 |
+
input_video.style(height=365, width=365)
|
| 213 |
+
output_video.style(height=365, width=365)
|
| 214 |
|
| 215 |
|
| 216 |
with gr.Row():
|
| 217 |
+
prompt = gr.Textbox(
|
| 218 |
label="Describe your edited video",
|
| 219 |
max_lines=1, value=""
|
| 220 |
)
|
|
|
|
| 232 |
run_button = gr.Button("Edit your video!", visible=True)
|
| 233 |
|
| 234 |
with gr.Accordion("Advanced Options", open=False):
|
| 235 |
+
with gr.Tabs() as tabs:
|
| 236 |
+
with gr.TabItem('General options', id=2):
|
| 237 |
+
with gr.Row():
|
| 238 |
+
with gr.Column(min_width=100):
|
| 239 |
+
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
| 240 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
|
| 241 |
+
gudiance_scale = gr.Slider(label='Guidance Scale', minimum=1, maximum=30,
|
| 242 |
+
value=7.5, step=0.5, interactive=True)
|
| 243 |
+
steps = gr.Slider(label='Inversion steps', minimum=100, maximum=500,
|
| 244 |
+
value=500, step=1, interactive=True)
|
| 245 |
+
n_timesteps = gr.Slider(label='Diffusion steps', minimum=25, maximum=100,
|
| 246 |
+
value=50, step=1, interactive=True)
|
| 247 |
+
|
| 248 |
+
with gr.Column(min_width=100):
|
| 249 |
+
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
|
| 250 |
+
batch_size = gr.Slider(label='Batch size', minimum=1, maximum=10,
|
| 251 |
+
value=8, step=1, interactive=True)
|
| 252 |
+
n_frames = gr.Slider(label='Num frames', minimum=20, maximum=200,
|
| 253 |
+
value=40, step=1, interactive=True)
|
| 254 |
+
pnp_attn_t = gr.Slider(label='pnp attention threshold', minimum=0, maximum=1,
|
| 255 |
+
value=0.5, step=0.5, interactive=True)
|
| 256 |
+
pnp_f_t = gr.Slider(label='pnp feature threshold', minimum=0, maximum=1,
|
| 257 |
+
value=0.8, step=0.05, interactive=True)
|
| 258 |
|
| 259 |
|
| 260 |
+
input_video.change(
|
| 261 |
fn = reset_do_inversion,
|
| 262 |
outputs = [do_inversion],
|
| 263 |
queue = False)
|
| 264 |
|
| 265 |
+
input_video.upload(
|
| 266 |
fn = reset_do_inversion,
|
| 267 |
outputs = [do_inversion],
|
| 268 |
queue = False).then(fn = preprocess_and_invert,
|
| 269 |
+
inputs = [input_video,
|
| 270 |
frames,
|
| 271 |
latents,
|
| 272 |
inverted_latents,
|
|
|
|
| 281 |
outputs = [frames,
|
| 282 |
latents,
|
| 283 |
inverted_latents,
|
| 284 |
+
do_inversion
|
|
|
|
| 285 |
|
| 286 |
])
|
| 287 |
+
|
| 288 |
+
run_button.click(fn = edit_with_pnp,
|
| 289 |
+
inputs = [input_video,
|
| 290 |
+
frames,
|
| 291 |
+
latents,
|
| 292 |
+
inverted_latents,
|
| 293 |
+
seed,
|
| 294 |
+
randomize_seed,
|
| 295 |
+
do_inversion,
|
| 296 |
+
steps,
|
| 297 |
+
prompt,
|
| 298 |
+
pnp_attn_t,
|
| 299 |
+
pnp_f_t,
|
| 300 |
+
batch_size,
|
| 301 |
+
n_frames,
|
| 302 |
+
n_timesteps,
|
| 303 |
+
gudiance_scale,
|
| 304 |
+
inversion_prompt ],
|
| 305 |
+
outputs = [output_video, frames, latents, inverted_latents, do_inversion]
|
| 306 |
+
)
|
| 307 |
|
| 308 |
+
# gr.Examples(
|
| 309 |
+
# examples=get_example(),
|
| 310 |
+
# label='Examples',
|
| 311 |
+
# inputs=[input_vid],
|
| 312 |
+
# outputs=[input_vid]
|
| 313 |
+
# )
|
| 314 |
|
| 315 |
|
| 316 |
|
| 317 |
demo.queue()
|
| 318 |
+
demo.launch(share=True)
|