Spaces:
Running
on
Zero
Running
on
Zero
Linoy Tsaban
commited on
Commit
·
68aadbb
1
Parent(s):
5a5e0bc
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,10 @@
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
|
|
@@ -9,45 +14,59 @@ model_id = "stabilityai/stable-diffusion-2-1-base"
|
|
| 9 |
inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
| 10 |
inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
):
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
toy_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 29 |
-
toy_scheduler.set_timesteps(save_steps)
|
| 30 |
-
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=save_steps,
|
| 31 |
-
strength=1.0,
|
| 32 |
-
device=device)
|
| 33 |
-
seed_everything(1)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
|
| 47 |
-
return frames, latents, inverted_latents
|
| 48 |
-
|
| 49 |
-
import gradio as gr
|
| 50 |
-
|
| 51 |
########
|
| 52 |
# demo #
|
| 53 |
########
|
|
@@ -64,7 +83,10 @@ intro = """
|
|
| 64 |
with gr.Blocks(css="style.css") as demo:
|
| 65 |
|
| 66 |
gr.HTML(intro)
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
with gr.Row():
|
| 70 |
input_vid = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
|
|
@@ -79,16 +101,57 @@ with gr.Blocks(css="style.css") as demo:
|
|
| 79 |
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
| 80 |
|
| 81 |
|
| 82 |
-
with gr.Row():
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
with gr.Row():
|
| 88 |
run_button = gr.Button("Edit your video!", visible=True)
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
| 4 |
+
from utils import *
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
|
| 9 |
|
| 10 |
|
|
|
|
| 14 |
inv_pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to(device)
|
| 15 |
inv_pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 16 |
|
| 17 |
+
def randomize_seed_fn():
|
| 18 |
+
seed = random.randint(0, np.iinfo(np.int32).max)
|
| 19 |
+
return seed
|
| 20 |
+
|
| 21 |
+
def preprocess_and_invert(video,
|
| 22 |
+
frames,
|
| 23 |
+
latents,
|
| 24 |
+
inverted_latents,
|
| 25 |
+
seed,
|
| 26 |
+
randomize_seed,
|
| 27 |
+
do_inversion,
|
| 28 |
+
height:int = 512,
|
| 29 |
+
weidth: int = 512,
|
| 30 |
+
# save_dir: str = "latents",
|
| 31 |
+
steps: int = 500,
|
| 32 |
+
batch_size: int = 8,
|
| 33 |
+
# save_steps: int = 50,
|
| 34 |
+
n_frames: int = 40,
|
| 35 |
+
inversion_prompt:str = ''
|
| 36 |
):
|
| 37 |
+
|
| 38 |
+
if do_inversion or randomize_seed:
|
| 39 |
|
| 40 |
+
# save_video_frames(data_path, img_size=(height, weidth))
|
| 41 |
+
frames = video_to_frames(video, img_size=(height, weidth))
|
| 42 |
+
# data_path = os.path.join('data', Path(video_path).stem)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
toy_scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
| 45 |
+
toy_scheduler.set_timesteps(save_steps)
|
| 46 |
+
timesteps_to_save, num_inference_steps = get_timesteps(toy_scheduler, num_inference_steps=save_steps,
|
| 47 |
+
strength=1.0,
|
| 48 |
+
device=device)
|
| 49 |
+
if randomize_seed:
|
| 50 |
+
seed = randomize_seed_fn()
|
| 51 |
+
seed_everything(seed)
|
| 52 |
+
|
| 53 |
+
frames, latents = get_data(inv_pipe, frames, n_frames)
|
| 54 |
+
|
| 55 |
+
inverted_latents = extract_latents(inv_pipe, num_steps = steps,
|
| 56 |
+
latent_frames = latents,
|
| 57 |
+
batch_size = batch_size,
|
| 58 |
+
timesteps_to_save = timesteps_to_save,
|
| 59 |
+
inversion_prompt = inversion_prompt,)
|
| 60 |
+
frames = gr.State(value=frames)
|
| 61 |
+
latents = gr.State(value=latents)
|
| 62 |
+
inverted_latents = gr.State(value=inverted_latents)
|
| 63 |
+
do_inversion = False
|
| 64 |
|
| 65 |
|
| 66 |
+
return frames, latents, inverted_latents, do_inversion
|
| 67 |
|
| 68 |
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
########
|
| 71 |
# demo #
|
| 72 |
########
|
|
|
|
| 83 |
with gr.Blocks(css="style.css") as demo:
|
| 84 |
|
| 85 |
gr.HTML(intro)
|
| 86 |
+
frames = gr.State()
|
| 87 |
+
inverted_latents = gr.State()
|
| 88 |
+
latents = gr.State()
|
| 89 |
+
do_inversion = gr.State(value=True)
|
| 90 |
|
| 91 |
with gr.Row():
|
| 92 |
input_vid = gr.Video(label="Input Video", interactive=True, elem_id="input_video")
|
|
|
|
| 101 |
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
|
| 102 |
|
| 103 |
|
| 104 |
+
# with gr.Row():
|
| 105 |
+
# inversion_progress = gr.Textbox(visible=False, label="Inversion progress")
|
| 106 |
+
|
|
|
|
|
|
|
| 107 |
with gr.Row():
|
| 108 |
run_button = gr.Button("Edit your video!", visible=True)
|
|
|
|
| 109 |
|
| 110 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 111 |
+
with gr.Tabs() as tabs:
|
| 112 |
+
|
| 113 |
+
with gr.TabItem('General options', id=2):
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column(min_width=100):
|
| 116 |
+
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
| 117 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
|
| 118 |
+
steps = gr.Slider(label='Inversion steps', minimum=100, maximum=500,
|
| 119 |
+
value=500, step=1, interactive=True)
|
| 120 |
+
with gr.Column(min_width=100):
|
| 121 |
+
inversion_prompt = gr.Textbox(lines=1, label="Inversion prompt", interactive=True, placeholder="")
|
| 122 |
+
batch_size = gr.Slider(label='Batch size', minimum=1, maximum=10,
|
| 123 |
+
value=8, step=1, interactive=True)
|
| 124 |
+
n_frames = gr.Slider(label='Num frames', minimum=20, maximum=200,
|
| 125 |
+
value=40, step=1, interactive=True)
|
| 126 |
+
|
| 127 |
+
input_vid.change(
|
| 128 |
+
fn = reset_do_inversion,
|
| 129 |
+
outputs = [do_inversion],
|
| 130 |
+
queue = False)
|
| 131 |
+
|
| 132 |
+
input_vid.upload(
|
| 133 |
+
fn = reset_do_inversion,
|
| 134 |
+
outputs = [do_inversion],
|
| 135 |
+
queue = False)
|
| 136 |
+
).then(fn = preprocess_and_invert,
|
| 137 |
+
inputs = [input_vid,
|
| 138 |
+
frames,
|
| 139 |
+
latents,
|
| 140 |
+
inverted_latents,
|
| 141 |
+
seed,
|
| 142 |
+
randomize_seed,
|
| 143 |
+
do_inversion,
|
| 144 |
+
steps,
|
| 145 |
+
batch_size,
|
| 146 |
+
n_frames,
|
| 147 |
+
inversion_prompt
|
| 148 |
+
],
|
| 149 |
+
outputs = [frames,
|
| 150 |
+
latents,
|
| 151 |
+
inverted_latents,
|
| 152 |
+
do_inversion
|
| 153 |
+
|
| 154 |
+
])
|
| 155 |
|
| 156 |
|
| 157 |
|