Commit
·
b59a5d0
0
Parent(s):
Move leaderboard app from bench repo
Browse files- .env.example +6 -0
- .gitignore +41 -0
- .python-version +1 -0
- README.md +203 -0
- main.py +6 -0
- pyproject.toml +24 -0
- src/leaderboard/__init__.py +15 -0
- src/leaderboard/app.py +330 -0
- src/leaderboard/data_loader.py +820 -0
- src/leaderboard/formatters.py +346 -0
- uv.lock +0 -0
.env.example
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# HuggingFace Dataset Repository
|
| 2 |
+
# The dataset repository where benchmark results are stored
|
| 3 |
+
HF_DATASET_REPO=your-username/your-dataset-repo
|
| 4 |
+
|
| 5 |
+
# HuggingFace API Token (optional, for private datasets)
|
| 6 |
+
HF_TOKEN=your_token_here
|
.gitignore
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
*.egg-info/
|
| 20 |
+
.installed.cfg
|
| 21 |
+
*.egg
|
| 22 |
+
|
| 23 |
+
# Virtual Environment
|
| 24 |
+
.venv/
|
| 25 |
+
venv/
|
| 26 |
+
ENV/
|
| 27 |
+
env/
|
| 28 |
+
|
| 29 |
+
# Environment variables
|
| 30 |
+
.env
|
| 31 |
+
|
| 32 |
+
# IDE
|
| 33 |
+
.vscode/
|
| 34 |
+
.idea/
|
| 35 |
+
*.swp
|
| 36 |
+
*.swo
|
| 37 |
+
*~
|
| 38 |
+
|
| 39 |
+
# OS
|
| 40 |
+
.DS_Store
|
| 41 |
+
Thumbs.db
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.13
|
README.md
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Transformers.js Benchmark Leaderboard
|
| 3 |
+
emoji: 🏆
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.1
|
| 8 |
+
app_file: src/leaderboard/app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
# Transformers.js Benchmark Leaderboard
|
| 13 |
+
|
| 14 |
+
A Gradio-based leaderboard that displays benchmark results from a HuggingFace Dataset repository.
|
| 15 |
+
|
| 16 |
+
## Features
|
| 17 |
+
|
| 18 |
+
- 📊 Display benchmark results in a searchable/filterable table
|
| 19 |
+
- 🔍 Filter by model name, task, platform, device, mode, and dtype
|
| 20 |
+
- 🔄 Refresh data on demand from HuggingFace Dataset
|
| 21 |
+
- 📈 View performance metrics (load time, inference time, p50/p90 percentiles)
|
| 22 |
+
|
| 23 |
+
## Setup
|
| 24 |
+
|
| 25 |
+
1. Install dependencies:
|
| 26 |
+
```bash
|
| 27 |
+
uv sync
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
2. Configure environment variables:
|
| 31 |
+
```bash
|
| 32 |
+
cp .env.example .env
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
Edit `.env` and set:
|
| 36 |
+
- `HF_DATASET_REPO`: Your HuggingFace dataset repository (e.g., `username/transformersjs-benchmarks`)
|
| 37 |
+
- `HF_TOKEN`: Your HuggingFace API token (optional, for private datasets)
|
| 38 |
+
|
| 39 |
+
## Usage
|
| 40 |
+
|
| 41 |
+
Run the leaderboard:
|
| 42 |
+
|
| 43 |
+
```bash
|
| 44 |
+
uv run python -m leaderboard.app
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
Or using the installed script:
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
uv run leaderboard
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
The leaderboard will be available at: http://localhost:7861
|
| 54 |
+
|
| 55 |
+
## Data Format
|
| 56 |
+
|
| 57 |
+
The leaderboard reads JSONL files from the HuggingFace Dataset repository. Each line should be a JSON object with the following structure:
|
| 58 |
+
|
| 59 |
+
```json
|
| 60 |
+
{
|
| 61 |
+
"id": "benchmark-id",
|
| 62 |
+
"platform": "web",
|
| 63 |
+
"modelId": "Xenova/all-MiniLM-L6-v2",
|
| 64 |
+
"task": "feature-extraction",
|
| 65 |
+
"mode": "warm",
|
| 66 |
+
"repeats": 3,
|
| 67 |
+
"batchSize": 1,
|
| 68 |
+
"device": "wasm",
|
| 69 |
+
"browser": "chromium",
|
| 70 |
+
"dtype": "fp32",
|
| 71 |
+
"headed": false,
|
| 72 |
+
"status": "completed",
|
| 73 |
+
"timestamp": 1234567890,
|
| 74 |
+
"result": {
|
| 75 |
+
"metrics": {
|
| 76 |
+
"load_ms": {"p50": 100, "p90": 120},
|
| 77 |
+
"first_infer_ms": {"p50": 10, "p90": 15},
|
| 78 |
+
"subsequent_infer_ms": {"p50": 8, "p90": 12}
|
| 79 |
+
},
|
| 80 |
+
"environment": {
|
| 81 |
+
"cpuCores": 10,
|
| 82 |
+
"memory": {"deviceMemory": 8}
|
| 83 |
+
}
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## Deployment on Hugging Face Spaces
|
| 89 |
+
|
| 90 |
+
This leaderboard is designed to be deployed on [Hugging Face Spaces](https://huggingface.co/spaces) using the Gradio SDK.
|
| 91 |
+
|
| 92 |
+
### Quick Deploy
|
| 93 |
+
|
| 94 |
+
1. **Create a new Space** on Hugging Face:
|
| 95 |
+
- Go to https://huggingface.co/new-space
|
| 96 |
+
- Choose **Gradio** as the SDK
|
| 97 |
+
- Set the Space name (e.g., `transformersjs-benchmark-leaderboard`)
|
| 98 |
+
|
| 99 |
+
2. **Upload files to your Space**:
|
| 100 |
+
```bash
|
| 101 |
+
# Clone your Space repository
|
| 102 |
+
git clone https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME
|
| 103 |
+
cd YOUR_SPACE_NAME
|
| 104 |
+
|
| 105 |
+
# Copy leaderboard files
|
| 106 |
+
cp -r /path/to/leaderboard/* .
|
| 107 |
+
|
| 108 |
+
# Commit and push
|
| 109 |
+
git add .
|
| 110 |
+
git commit -m "Initial leaderboard deployment"
|
| 111 |
+
git push
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
3. **Configure Space secrets**:
|
| 115 |
+
- Go to your Space settings → **Variables and secrets**
|
| 116 |
+
- Add the following secrets:
|
| 117 |
+
- `HF_DATASET_REPO`: Your dataset repository (e.g., `username/benchmark-results`)
|
| 118 |
+
- `HF_TOKEN`: Your HuggingFace API token (for private datasets)
|
| 119 |
+
|
| 120 |
+
4. **Space will automatically deploy** and be available at:
|
| 121 |
+
```
|
| 122 |
+
https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
### Space Configuration
|
| 126 |
+
|
| 127 |
+
The Space is configured via the YAML frontmatter in `README.md`:
|
| 128 |
+
|
| 129 |
+
```yaml
|
| 130 |
+
---
|
| 131 |
+
title: Transformers.js Benchmark Leaderboard
|
| 132 |
+
emoji: 🏆
|
| 133 |
+
colorFrom: blue
|
| 134 |
+
colorTo: purple
|
| 135 |
+
sdk: gradio
|
| 136 |
+
sdk_version: 5.49.1
|
| 137 |
+
app_file: src/leaderboard/app.py
|
| 138 |
+
pinned: false
|
| 139 |
+
---
|
| 140 |
+
```
|
| 141 |
+
|
| 142 |
+
**Key configuration options:**
|
| 143 |
+
- `sdk`: Must be `gradio` for Gradio apps
|
| 144 |
+
- `sdk_version`: Gradio version (matches your `pyproject.toml`)
|
| 145 |
+
- `app_file`: Path to the main Python file (relative to repository root)
|
| 146 |
+
- `pinned`: Set to `true` to pin the Space on your profile
|
| 147 |
+
|
| 148 |
+
### Requirements
|
| 149 |
+
|
| 150 |
+
The Space will automatically install dependencies from `pyproject.toml`:
|
| 151 |
+
- `gradio>=5.9.1`
|
| 152 |
+
- `pandas`
|
| 153 |
+
- `huggingface-hub`
|
| 154 |
+
- `python-dotenv`
|
| 155 |
+
|
| 156 |
+
### Environment Variables
|
| 157 |
+
|
| 158 |
+
Set these in your Space settings or in a `.env` file (not recommended for production):
|
| 159 |
+
|
| 160 |
+
| Variable | Required | Description |
|
| 161 |
+
|----------|----------|-------------|
|
| 162 |
+
| `HF_DATASET_REPO` | Yes | HuggingFace dataset repository containing benchmark results |
|
| 163 |
+
| `HF_TOKEN` | No | HuggingFace API token (only for private datasets) |
|
| 164 |
+
|
| 165 |
+
### Auto-Restart
|
| 166 |
+
|
| 167 |
+
Spaces automatically restart when:
|
| 168 |
+
- Code is pushed to the repository
|
| 169 |
+
- Dependencies are updated
|
| 170 |
+
- Environment variables are changed
|
| 171 |
+
|
| 172 |
+
### Monitoring
|
| 173 |
+
|
| 174 |
+
- View logs in the Space's **Logs** tab
|
| 175 |
+
- Check status in the **Settings** tab
|
| 176 |
+
- Monitor resource usage (CPU, memory)
|
| 177 |
+
|
| 178 |
+
## Development
|
| 179 |
+
|
| 180 |
+
The leaderboard is built with:
|
| 181 |
+
- **Gradio**: Web UI framework
|
| 182 |
+
- **Pandas**: Data manipulation
|
| 183 |
+
- **HuggingFace Hub**: Dataset loading
|
| 184 |
+
|
| 185 |
+
### Local Development
|
| 186 |
+
|
| 187 |
+
1. Install dependencies:
|
| 188 |
+
```bash
|
| 189 |
+
uv sync
|
| 190 |
+
```
|
| 191 |
+
|
| 192 |
+
2. Set environment variables:
|
| 193 |
+
```bash
|
| 194 |
+
export HF_DATASET_REPO="your-username/benchmark-results"
|
| 195 |
+
export HF_TOKEN="your-hf-token" # Optional
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
3. Run locally:
|
| 199 |
+
```bash
|
| 200 |
+
uv run python -m leaderboard.app
|
| 201 |
+
```
|
| 202 |
+
|
| 203 |
+
4. Access at: http://localhost:7861
|
main.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def main():
|
| 2 |
+
print("Hello from leaderboard!")
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == "__main__":
|
| 6 |
+
main()
|
pyproject.toml
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "leaderboard"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Transformers.js Benchmark Leaderboard - Display benchmark results from HuggingFace Dataset"
|
| 5 |
+
requires-python = ">=3.13"
|
| 6 |
+
dependencies = [
|
| 7 |
+
"gradio>=5.49.1",
|
| 8 |
+
"huggingface-hub>=0.35.3",
|
| 9 |
+
"pandas>=2.3.3",
|
| 10 |
+
"python-dotenv>=1.1.1",
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
[project.scripts]
|
| 14 |
+
leaderboard = "leaderboard.app:create_leaderboard_ui"
|
| 15 |
+
|
| 16 |
+
[build-system]
|
| 17 |
+
requires = ["hatchling"]
|
| 18 |
+
build-backend = "hatchling.build"
|
| 19 |
+
|
| 20 |
+
[tool.hatch.build.targets.wheel]
|
| 21 |
+
packages = ["src/leaderboard"]
|
| 22 |
+
|
| 23 |
+
[tool.uv]
|
| 24 |
+
package = true
|
src/leaderboard/__init__.py
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Transformers.js Benchmark Leaderboard"""
|
| 2 |
+
|
| 3 |
+
from .app import create_leaderboard_ui
|
| 4 |
+
from .data_loader import load_benchmark_data, get_unique_values, flatten_result, get_first_timer_friendly_models
|
| 5 |
+
from .formatters import apply_formatting
|
| 6 |
+
|
| 7 |
+
__version__ = "0.1.0"
|
| 8 |
+
__all__ = [
|
| 9 |
+
"create_leaderboard_ui",
|
| 10 |
+
"load_benchmark_data",
|
| 11 |
+
"get_unique_values",
|
| 12 |
+
"flatten_result",
|
| 13 |
+
"get_first_timer_friendly_models",
|
| 14 |
+
"apply_formatting",
|
| 15 |
+
]
|
src/leaderboard/app.py
ADDED
|
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Transformers.js Benchmark Leaderboard
|
| 3 |
+
|
| 4 |
+
A Gradio app that displays benchmark results from a HuggingFace Dataset repository.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import logging
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
+
|
| 13 |
+
from leaderboard.data_loader import (
|
| 14 |
+
load_benchmark_data,
|
| 15 |
+
get_unique_values,
|
| 16 |
+
get_webgpu_beginner_friendly_models,
|
| 17 |
+
format_recommended_models_as_markdown,
|
| 18 |
+
)
|
| 19 |
+
from leaderboard.formatters import apply_formatting
|
| 20 |
+
|
| 21 |
+
# Configure logging
|
| 22 |
+
logging.basicConfig(
|
| 23 |
+
level=logging.INFO,
|
| 24 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 25 |
+
datefmt='%Y-%m-%d %H:%M:%S'
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
# Load environment variables
|
| 29 |
+
load_dotenv()
|
| 30 |
+
|
| 31 |
+
HF_DATASET_REPO = os.getenv("HF_DATASET_REPO")
|
| 32 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def load_data() -> pd.DataFrame:
|
| 36 |
+
"""Load benchmark data from configured HF Dataset repository."""
|
| 37 |
+
# Load raw data
|
| 38 |
+
df = load_benchmark_data(
|
| 39 |
+
dataset_repo=HF_DATASET_REPO,
|
| 40 |
+
token=HF_TOKEN,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
return df
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def format_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
| 47 |
+
"""Apply formatting to dataframe for display."""
|
| 48 |
+
if df.empty:
|
| 49 |
+
return df
|
| 50 |
+
|
| 51 |
+
return df.apply(lambda row: pd.Series(apply_formatting(row.to_dict())), axis=1)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def filter_data(
|
| 55 |
+
df: pd.DataFrame,
|
| 56 |
+
model_filter: str,
|
| 57 |
+
task_filter: str,
|
| 58 |
+
platform_filter: str,
|
| 59 |
+
device_filter: str,
|
| 60 |
+
mode_filter: str,
|
| 61 |
+
dtype_filter: str,
|
| 62 |
+
status_filter: str,
|
| 63 |
+
) -> pd.DataFrame:
|
| 64 |
+
"""Filter benchmark data based on user inputs."""
|
| 65 |
+
if df.empty:
|
| 66 |
+
return df
|
| 67 |
+
|
| 68 |
+
filtered = df.copy()
|
| 69 |
+
|
| 70 |
+
# Model name filter
|
| 71 |
+
if model_filter:
|
| 72 |
+
filtered = filtered[
|
| 73 |
+
filtered["modelId"].str.contains(model_filter, case=False, na=False)
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
# Task filter
|
| 77 |
+
if task_filter and task_filter != "All":
|
| 78 |
+
filtered = filtered[filtered["task"] == task_filter]
|
| 79 |
+
|
| 80 |
+
# Platform filter
|
| 81 |
+
if platform_filter and platform_filter != "All":
|
| 82 |
+
filtered = filtered[filtered["platform"] == platform_filter]
|
| 83 |
+
|
| 84 |
+
# Device filter
|
| 85 |
+
if device_filter and device_filter != "All":
|
| 86 |
+
filtered = filtered[filtered["device"] == device_filter]
|
| 87 |
+
|
| 88 |
+
# Mode filter
|
| 89 |
+
if mode_filter and mode_filter != "All":
|
| 90 |
+
filtered = filtered[filtered["mode"] == mode_filter]
|
| 91 |
+
|
| 92 |
+
# DType filter
|
| 93 |
+
if dtype_filter and dtype_filter != "All":
|
| 94 |
+
filtered = filtered[filtered["dtype"] == dtype_filter]
|
| 95 |
+
|
| 96 |
+
# Status filter
|
| 97 |
+
if status_filter and status_filter != "All":
|
| 98 |
+
filtered = filtered[filtered["status"] == status_filter]
|
| 99 |
+
|
| 100 |
+
return filtered
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def create_leaderboard_ui():
|
| 104 |
+
"""Create the Gradio UI for the leaderboard."""
|
| 105 |
+
|
| 106 |
+
# Load initial data
|
| 107 |
+
df = load_data()
|
| 108 |
+
formatted_df = format_dataframe(df)
|
| 109 |
+
|
| 110 |
+
with gr.Blocks(title="Transformers.js Benchmark Leaderboard") as demo:
|
| 111 |
+
# Cache raw data in Gradio state to avoid reloading on every filter change
|
| 112 |
+
raw_data_state = gr.State(df)
|
| 113 |
+
gr.Markdown("# 🏆 Transformers.js Benchmark Leaderboard")
|
| 114 |
+
gr.Markdown(
|
| 115 |
+
"Compare benchmark results for different models, platforms, and configurations."
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
if not HF_DATASET_REPO:
|
| 119 |
+
gr.Markdown(
|
| 120 |
+
"⚠️ **HF_DATASET_REPO not configured.** "
|
| 121 |
+
"Please set the environment variable to load benchmark data."
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
gr.Markdown(
|
| 125 |
+
"💡 **Tip:** Use the recommended models section below to find popular models "
|
| 126 |
+
"that are fast to load and quick to run - perfect for getting started!"
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
# Recommended models section
|
| 130 |
+
gr.Markdown("## ⭐ Recommended WebGPU Models for Beginners")
|
| 131 |
+
gr.Markdown(
|
| 132 |
+
"These models are selected for being:\n"
|
| 133 |
+
"- **WebGPU compatible** - Work in modern browsers with GPU acceleration\n"
|
| 134 |
+
"- **Beginner-friendly** - Popular, fast to load, and quick to run\n"
|
| 135 |
+
"- Sorted by task type, showing top 3-5 models per task"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Get recommended models
|
| 139 |
+
recommended_models = get_webgpu_beginner_friendly_models(df, limit_per_task=5)
|
| 140 |
+
formatted_recommended = format_dataframe(recommended_models)
|
| 141 |
+
markdown_output = format_recommended_models_as_markdown(recommended_models)
|
| 142 |
+
|
| 143 |
+
recommended_table = gr.DataFrame(
|
| 144 |
+
value=formatted_recommended,
|
| 145 |
+
label="Top WebGPU-Compatible Models by Task",
|
| 146 |
+
interactive=False,
|
| 147 |
+
wrap=True,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
gr.Markdown("### 📝 Markdown Output for llms.txt")
|
| 151 |
+
gr.Markdown(
|
| 152 |
+
"Copy the markdown below to embed in your llms.txt or documentation:"
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
markdown_textbox = gr.Textbox(
|
| 156 |
+
value=markdown_output,
|
| 157 |
+
label="Markdown for llms.txt",
|
| 158 |
+
lines=20,
|
| 159 |
+
max_lines=30,
|
| 160 |
+
show_copy_button=True,
|
| 161 |
+
interactive=False,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
gr.Markdown("---")
|
| 165 |
+
gr.Markdown("## 🔍 Full Benchmark Results")
|
| 166 |
+
|
| 167 |
+
with gr.Row():
|
| 168 |
+
refresh_btn = gr.Button("🔄 Refresh Data", variant="primary")
|
| 169 |
+
|
| 170 |
+
with gr.Row():
|
| 171 |
+
model_filter = gr.Textbox(
|
| 172 |
+
label="Model Name",
|
| 173 |
+
placeholder="Filter by model name (e.g., 'bert', 'gpt')",
|
| 174 |
+
)
|
| 175 |
+
task_filter = gr.Dropdown(
|
| 176 |
+
label="Task",
|
| 177 |
+
choices=get_unique_values(df, "task"),
|
| 178 |
+
value="All",
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
with gr.Row():
|
| 182 |
+
platform_filter = gr.Dropdown(
|
| 183 |
+
label="Platform",
|
| 184 |
+
choices=get_unique_values(df, "platform"),
|
| 185 |
+
value="All",
|
| 186 |
+
)
|
| 187 |
+
device_filter = gr.Dropdown(
|
| 188 |
+
label="Device",
|
| 189 |
+
choices=get_unique_values(df, "device"),
|
| 190 |
+
value="All",
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
with gr.Row():
|
| 194 |
+
mode_filter = gr.Dropdown(
|
| 195 |
+
label="Mode",
|
| 196 |
+
choices=get_unique_values(df, "mode"),
|
| 197 |
+
value="All",
|
| 198 |
+
)
|
| 199 |
+
dtype_filter = gr.Dropdown(
|
| 200 |
+
label="DType",
|
| 201 |
+
choices=get_unique_values(df, "dtype"),
|
| 202 |
+
value="All",
|
| 203 |
+
)
|
| 204 |
+
status_filter = gr.Dropdown(
|
| 205 |
+
label="Status",
|
| 206 |
+
choices=get_unique_values(df, "status"),
|
| 207 |
+
value="All",
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
results_table = gr.DataFrame(
|
| 211 |
+
value=formatted_df,
|
| 212 |
+
label="All Benchmark Results",
|
| 213 |
+
interactive=False,
|
| 214 |
+
wrap=True,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
gr.Markdown("### 📊 Metrics")
|
| 218 |
+
gr.Markdown(
|
| 219 |
+
"**Benchmark Metrics:**\n"
|
| 220 |
+
"- **load_ms**: Model loading time in milliseconds\n"
|
| 221 |
+
"- **first_infer_ms**: First inference time in milliseconds\n"
|
| 222 |
+
"- **subsequent_infer_ms**: Subsequent inference time in milliseconds\n"
|
| 223 |
+
"- **p50/p90**: 50th and 90th percentile values\n\n"
|
| 224 |
+
"**HuggingFace Metrics:**\n"
|
| 225 |
+
"- **downloads**: Total downloads from HuggingFace Hub\n"
|
| 226 |
+
"- **likes**: Number of likes on HuggingFace Hub\n\n"
|
| 227 |
+
"**WebGPU Compatibility:**\n"
|
| 228 |
+
"- Models in the recommended section are all WebGPU compatible\n"
|
| 229 |
+
"- WebGPU enables GPU acceleration in modern browsers"
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
def update_data():
|
| 233 |
+
"""Reload data from HuggingFace."""
|
| 234 |
+
new_df = load_data()
|
| 235 |
+
formatted_new_df = format_dataframe(new_df)
|
| 236 |
+
|
| 237 |
+
# Update recommended models
|
| 238 |
+
new_recommended = get_webgpu_beginner_friendly_models(new_df, limit_per_task=5)
|
| 239 |
+
formatted_new_recommended = format_dataframe(new_recommended)
|
| 240 |
+
new_markdown = format_recommended_models_as_markdown(new_recommended)
|
| 241 |
+
|
| 242 |
+
return (
|
| 243 |
+
new_df, # Update cached raw data
|
| 244 |
+
formatted_new_recommended, # Update recommended models
|
| 245 |
+
new_markdown, # Update markdown output
|
| 246 |
+
formatted_new_df,
|
| 247 |
+
gr.update(choices=get_unique_values(new_df, "task")),
|
| 248 |
+
gr.update(choices=get_unique_values(new_df, "platform")),
|
| 249 |
+
gr.update(choices=get_unique_values(new_df, "device")),
|
| 250 |
+
gr.update(choices=get_unique_values(new_df, "mode")),
|
| 251 |
+
gr.update(choices=get_unique_values(new_df, "dtype")),
|
| 252 |
+
gr.update(choices=get_unique_values(new_df, "status")),
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
def apply_filters(raw_df, model, task, platform, device, mode, dtype, status):
|
| 256 |
+
"""Apply filters and return filtered DataFrame."""
|
| 257 |
+
# Use cached raw data instead of reloading
|
| 258 |
+
filtered = filter_data(raw_df, model, task, platform, device, mode, dtype, status)
|
| 259 |
+
return format_dataframe(filtered)
|
| 260 |
+
|
| 261 |
+
# Refresh button updates data and resets filters
|
| 262 |
+
refresh_btn.click(
|
| 263 |
+
fn=update_data,
|
| 264 |
+
outputs=[
|
| 265 |
+
raw_data_state,
|
| 266 |
+
recommended_table,
|
| 267 |
+
markdown_textbox,
|
| 268 |
+
results_table,
|
| 269 |
+
task_filter,
|
| 270 |
+
platform_filter,
|
| 271 |
+
device_filter,
|
| 272 |
+
mode_filter,
|
| 273 |
+
dtype_filter,
|
| 274 |
+
status_filter,
|
| 275 |
+
],
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
# Filter inputs update the table (using cached raw data)
|
| 279 |
+
filter_inputs = [
|
| 280 |
+
raw_data_state,
|
| 281 |
+
model_filter,
|
| 282 |
+
task_filter,
|
| 283 |
+
platform_filter,
|
| 284 |
+
device_filter,
|
| 285 |
+
mode_filter,
|
| 286 |
+
dtype_filter,
|
| 287 |
+
status_filter,
|
| 288 |
+
]
|
| 289 |
+
|
| 290 |
+
model_filter.change(
|
| 291 |
+
fn=apply_filters,
|
| 292 |
+
inputs=filter_inputs,
|
| 293 |
+
outputs=results_table,
|
| 294 |
+
)
|
| 295 |
+
task_filter.change(
|
| 296 |
+
fn=apply_filters,
|
| 297 |
+
inputs=filter_inputs,
|
| 298 |
+
outputs=results_table,
|
| 299 |
+
)
|
| 300 |
+
platform_filter.change(
|
| 301 |
+
fn=apply_filters,
|
| 302 |
+
inputs=filter_inputs,
|
| 303 |
+
outputs=results_table,
|
| 304 |
+
)
|
| 305 |
+
device_filter.change(
|
| 306 |
+
fn=apply_filters,
|
| 307 |
+
inputs=filter_inputs,
|
| 308 |
+
outputs=results_table,
|
| 309 |
+
)
|
| 310 |
+
mode_filter.change(
|
| 311 |
+
fn=apply_filters,
|
| 312 |
+
inputs=filter_inputs,
|
| 313 |
+
outputs=results_table,
|
| 314 |
+
)
|
| 315 |
+
dtype_filter.change(
|
| 316 |
+
fn=apply_filters,
|
| 317 |
+
inputs=filter_inputs,
|
| 318 |
+
outputs=results_table,
|
| 319 |
+
)
|
| 320 |
+
status_filter.change(
|
| 321 |
+
fn=apply_filters,
|
| 322 |
+
inputs=filter_inputs,
|
| 323 |
+
outputs=results_table,
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
return demo
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
demo = create_leaderboard_ui()
|
| 330 |
+
demo.launch(server_name="0.0.0.0", server_port=7861)
|
src/leaderboard/data_loader.py
ADDED
|
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Data loader module for loading benchmark results from HuggingFace Dataset.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import json
|
| 6 |
+
import logging
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import List, Dict, Any, Optional
|
| 9 |
+
from datetime import datetime
|
| 10 |
+
import pandas as pd
|
| 11 |
+
from huggingface_hub import snapshot_download, list_models
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def load_benchmark_data(
|
| 17 |
+
dataset_repo: str,
|
| 18 |
+
token: Optional[str] = None,
|
| 19 |
+
) -> pd.DataFrame:
|
| 20 |
+
"""Load benchmark data from HuggingFace Dataset repository.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
dataset_repo: HuggingFace dataset repository ID (e.g., "username/dataset-name")
|
| 24 |
+
token: HuggingFace API token (optional, for private datasets)
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
DataFrame containing all benchmark results
|
| 28 |
+
"""
|
| 29 |
+
if not dataset_repo:
|
| 30 |
+
return pd.DataFrame()
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
# Download the entire repository snapshot
|
| 34 |
+
logger.info(f"Downloading dataset snapshot from {dataset_repo}...")
|
| 35 |
+
local_dir = snapshot_download(
|
| 36 |
+
repo_id=dataset_repo,
|
| 37 |
+
repo_type="dataset",
|
| 38 |
+
token=token,
|
| 39 |
+
)
|
| 40 |
+
logger.info(f"Dataset downloaded to {local_dir}")
|
| 41 |
+
|
| 42 |
+
# Find all JSON files in the downloaded directory
|
| 43 |
+
local_path = Path(local_dir)
|
| 44 |
+
json_files = list(local_path.rglob("*.json"))
|
| 45 |
+
|
| 46 |
+
if not json_files:
|
| 47 |
+
logger.warning("No JSON files found in dataset")
|
| 48 |
+
return pd.DataFrame()
|
| 49 |
+
|
| 50 |
+
logger.info(f"Found {len(json_files)} JSON files")
|
| 51 |
+
|
| 52 |
+
# Load all benchmark results
|
| 53 |
+
all_results = []
|
| 54 |
+
for file_path in json_files:
|
| 55 |
+
try:
|
| 56 |
+
with open(file_path, "r") as f:
|
| 57 |
+
result = json.load(f)
|
| 58 |
+
|
| 59 |
+
if result:
|
| 60 |
+
flattened = flatten_result(result)
|
| 61 |
+
all_results.append(flattened)
|
| 62 |
+
except Exception as e:
|
| 63 |
+
logger.error(f"Error loading {file_path}: {e}")
|
| 64 |
+
continue
|
| 65 |
+
|
| 66 |
+
if not all_results:
|
| 67 |
+
return pd.DataFrame()
|
| 68 |
+
|
| 69 |
+
logger.info(f"Loaded {len(all_results)} benchmark results")
|
| 70 |
+
|
| 71 |
+
# Convert to DataFrame
|
| 72 |
+
df = pd.DataFrame(all_results)
|
| 73 |
+
|
| 74 |
+
# Enrich with HuggingFace model metadata
|
| 75 |
+
df = enrich_with_hf_metadata(df)
|
| 76 |
+
|
| 77 |
+
# Add first-timer-friendly score
|
| 78 |
+
df = add_first_timer_score(df)
|
| 79 |
+
|
| 80 |
+
# Sort by model name and timestamp
|
| 81 |
+
if "modelId" in df.columns and "timestamp" in df.columns:
|
| 82 |
+
df = df.sort_values(["modelId", "timestamp"], ascending=[True, False])
|
| 83 |
+
|
| 84 |
+
return df
|
| 85 |
+
|
| 86 |
+
except Exception as e:
|
| 87 |
+
logger.error(f"Error loading benchmark data: {e}")
|
| 88 |
+
return pd.DataFrame()
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def flatten_result(result: Dict[str, Any]) -> Dict[str, Any]:
|
| 92 |
+
"""Flatten nested benchmark result for display.
|
| 93 |
+
|
| 94 |
+
The HF Dataset format is already flattened by the bench service,
|
| 95 |
+
so we just need to extract the relevant fields.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
result: Raw benchmark result dictionary
|
| 99 |
+
|
| 100 |
+
Returns:
|
| 101 |
+
Flattened dictionary with extracted fields
|
| 102 |
+
"""
|
| 103 |
+
# Convert timestamp from milliseconds to datetime
|
| 104 |
+
timestamp_ms = result.get("timestamp", 0)
|
| 105 |
+
timestamp_dt = None
|
| 106 |
+
if timestamp_ms:
|
| 107 |
+
try:
|
| 108 |
+
timestamp_dt = datetime.fromtimestamp(timestamp_ms / 1000)
|
| 109 |
+
except (ValueError, OSError):
|
| 110 |
+
timestamp_dt = None
|
| 111 |
+
|
| 112 |
+
# Determine actual status - if there's an error, it should be "failed"
|
| 113 |
+
status = result.get("status", "")
|
| 114 |
+
if "error" in result:
|
| 115 |
+
status = "failed"
|
| 116 |
+
|
| 117 |
+
flat = {
|
| 118 |
+
"id": result.get("id", ""),
|
| 119 |
+
"platform": result.get("platform", ""),
|
| 120 |
+
"modelId": result.get("modelId", ""),
|
| 121 |
+
"task": result.get("task", ""),
|
| 122 |
+
"mode": result.get("mode", ""),
|
| 123 |
+
"repeats": result.get("repeats", 0),
|
| 124 |
+
"batchSize": result.get("batchSize", 0),
|
| 125 |
+
"device": result.get("device", ""),
|
| 126 |
+
"browser": result.get("browser", ""),
|
| 127 |
+
"dtype": result.get("dtype", ""),
|
| 128 |
+
"headed": result.get("headed", False),
|
| 129 |
+
"status": status,
|
| 130 |
+
"timestamp": timestamp_dt,
|
| 131 |
+
"runtime": result.get("runtime", ""),
|
| 132 |
+
# Initialize metric fields with None (will be filled if metrics exist)
|
| 133 |
+
"load_ms_p50": None,
|
| 134 |
+
"load_ms_p90": None,
|
| 135 |
+
"first_infer_ms_p50": None,
|
| 136 |
+
"first_infer_ms_p90": None,
|
| 137 |
+
"subsequent_infer_ms_p50": None,
|
| 138 |
+
"subsequent_infer_ms_p90": None,
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
# Extract metrics if available (already at top level)
|
| 142 |
+
if "metrics" in result:
|
| 143 |
+
metrics = result["metrics"]
|
| 144 |
+
|
| 145 |
+
# Load time
|
| 146 |
+
if "load_ms" in metrics and "p50" in metrics["load_ms"]:
|
| 147 |
+
flat["load_ms_p50"] = metrics["load_ms"]["p50"]
|
| 148 |
+
flat["load_ms_p90"] = metrics["load_ms"]["p90"]
|
| 149 |
+
|
| 150 |
+
# First inference time
|
| 151 |
+
if "first_infer_ms" in metrics and "p50" in metrics["first_infer_ms"]:
|
| 152 |
+
flat["first_infer_ms_p50"] = metrics["first_infer_ms"]["p50"]
|
| 153 |
+
flat["first_infer_ms_p90"] = metrics["first_infer_ms"]["p90"]
|
| 154 |
+
|
| 155 |
+
# Subsequent inference time
|
| 156 |
+
if "subsequent_infer_ms" in metrics and "p50" in metrics["subsequent_infer_ms"]:
|
| 157 |
+
flat["subsequent_infer_ms_p50"] = metrics["subsequent_infer_ms"]["p50"]
|
| 158 |
+
flat["subsequent_infer_ms_p90"] = metrics["subsequent_infer_ms"]["p90"]
|
| 159 |
+
|
| 160 |
+
# Extract environment info (already at top level)
|
| 161 |
+
if "environment" in result:
|
| 162 |
+
env = result["environment"]
|
| 163 |
+
flat["cpuCores"] = env.get("cpuCores", 0)
|
| 164 |
+
if "memory" in env:
|
| 165 |
+
flat["memory_gb"] = env["memory"].get("deviceMemory", 0)
|
| 166 |
+
|
| 167 |
+
# Calculate duration
|
| 168 |
+
if "completedAt" in result and "startedAt" in result:
|
| 169 |
+
flat["duration_s"] = (result["completedAt"] - result["startedAt"]) / 1000
|
| 170 |
+
|
| 171 |
+
return flat
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
def enrich_with_hf_metadata(df: pd.DataFrame) -> pd.DataFrame:
|
| 175 |
+
"""Enrich benchmark data with HuggingFace model metadata (downloads, likes).
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
df: DataFrame containing benchmark results
|
| 179 |
+
token: HuggingFace API token (optional)
|
| 180 |
+
|
| 181 |
+
Returns:
|
| 182 |
+
DataFrame with added downloads and likes columns
|
| 183 |
+
"""
|
| 184 |
+
if df.empty or "modelId" not in df.columns:
|
| 185 |
+
return df
|
| 186 |
+
|
| 187 |
+
# Get unique model IDs
|
| 188 |
+
model_ids = df["modelId"].unique().tolist()
|
| 189 |
+
|
| 190 |
+
# Fetch metadata for all models
|
| 191 |
+
model_metadata = {}
|
| 192 |
+
logger.info(f"Fetching metadata for {len(model_ids)} models from HuggingFace...")
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
for model in list_models(filter=["transformers.js"]):
|
| 196 |
+
if model.id in model_ids:
|
| 197 |
+
model_metadata[model.id] = {
|
| 198 |
+
"downloads": model.downloads or 0,
|
| 199 |
+
"likes": model.likes or 0,
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
# Break early if we have all models
|
| 203 |
+
if len(model_metadata) == len(model_ids):
|
| 204 |
+
break
|
| 205 |
+
|
| 206 |
+
except Exception as e:
|
| 207 |
+
logger.error(f"Error fetching HuggingFace metadata: {e}")
|
| 208 |
+
|
| 209 |
+
# Add metadata to dataframe
|
| 210 |
+
df["downloads"] = df["modelId"].map(lambda x: model_metadata.get(x, {}).get("downloads", 0))
|
| 211 |
+
df["likes"] = df["modelId"].map(lambda x: model_metadata.get(x, {}).get("likes", 0))
|
| 212 |
+
|
| 213 |
+
return df
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
def add_first_timer_score(df: pd.DataFrame) -> pd.DataFrame:
|
| 217 |
+
"""Add first-timer-friendly score to all rows in the dataframe.
|
| 218 |
+
|
| 219 |
+
The score is calculated per task, normalized from 0-100 where:
|
| 220 |
+
- Higher score = better for first-timers
|
| 221 |
+
- Based on: downloads (25%), likes (15%), load time (30%), inference time (30%)
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
df: DataFrame containing benchmark results
|
| 225 |
+
|
| 226 |
+
Returns:
|
| 227 |
+
DataFrame with added 'first_timer_score' column
|
| 228 |
+
"""
|
| 229 |
+
if df.empty:
|
| 230 |
+
return df
|
| 231 |
+
|
| 232 |
+
# Filter only successful benchmarks
|
| 233 |
+
filtered = df[df["status"] == "completed"].copy() if "status" in df.columns else df.copy()
|
| 234 |
+
|
| 235 |
+
if filtered.empty:
|
| 236 |
+
# Add empty score column for failed benchmarks
|
| 237 |
+
df["first_timer_score"] = None
|
| 238 |
+
return df
|
| 239 |
+
|
| 240 |
+
# Check if task column exists
|
| 241 |
+
if "task" not in filtered.columns:
|
| 242 |
+
df["first_timer_score"] = None
|
| 243 |
+
return df
|
| 244 |
+
|
| 245 |
+
# Calculate score per task
|
| 246 |
+
for task in filtered["task"].unique():
|
| 247 |
+
task_mask = filtered["task"] == task
|
| 248 |
+
task_df = filtered[task_mask].copy()
|
| 249 |
+
|
| 250 |
+
if task_df.empty:
|
| 251 |
+
continue
|
| 252 |
+
|
| 253 |
+
# Normalize metrics within this task (0-1 scale)
|
| 254 |
+
|
| 255 |
+
# Downloads score (0-1, higher is better)
|
| 256 |
+
if "downloads" in task_df.columns:
|
| 257 |
+
max_downloads = task_df["downloads"].max()
|
| 258 |
+
downloads_score = task_df["downloads"] / max_downloads if max_downloads > 0 else 0
|
| 259 |
+
else:
|
| 260 |
+
downloads_score = 0
|
| 261 |
+
|
| 262 |
+
# Likes score (0-1, higher is better)
|
| 263 |
+
if "likes" in task_df.columns:
|
| 264 |
+
max_likes = task_df["likes"].max()
|
| 265 |
+
likes_score = task_df["likes"] / max_likes if max_likes > 0 else 0
|
| 266 |
+
else:
|
| 267 |
+
likes_score = 0
|
| 268 |
+
|
| 269 |
+
# Load time score (0-1, lower time is better)
|
| 270 |
+
if "load_ms_p50" in task_df.columns:
|
| 271 |
+
max_load = task_df["load_ms_p50"].max()
|
| 272 |
+
load_score = 1 - (task_df["load_ms_p50"] / max_load) if max_load > 0 else 0
|
| 273 |
+
else:
|
| 274 |
+
load_score = 0
|
| 275 |
+
|
| 276 |
+
# Inference time score (0-1, lower time is better)
|
| 277 |
+
if "first_infer_ms_p50" in task_df.columns:
|
| 278 |
+
max_infer = task_df["first_infer_ms_p50"].max()
|
| 279 |
+
infer_score = 1 - (task_df["first_infer_ms_p50"] / max_infer) if max_infer > 0 else 0
|
| 280 |
+
else:
|
| 281 |
+
infer_score = 0
|
| 282 |
+
|
| 283 |
+
# Calculate weighted score and scale to 0-100
|
| 284 |
+
weighted_score = (
|
| 285 |
+
(downloads_score * 0.25) +
|
| 286 |
+
(likes_score * 0.15) +
|
| 287 |
+
(load_score * 0.30) +
|
| 288 |
+
(infer_score * 0.30)
|
| 289 |
+
) * 100
|
| 290 |
+
|
| 291 |
+
# Assign scores back to the filtered dataframe
|
| 292 |
+
filtered.loc[task_mask, "first_timer_score"] = weighted_score
|
| 293 |
+
|
| 294 |
+
# Merge scores back to original dataframe
|
| 295 |
+
if "first_timer_score" in filtered.columns:
|
| 296 |
+
df = df.merge(
|
| 297 |
+
filtered[["id", "first_timer_score"]],
|
| 298 |
+
on="id",
|
| 299 |
+
how="left"
|
| 300 |
+
)
|
| 301 |
+
else:
|
| 302 |
+
df["first_timer_score"] = None
|
| 303 |
+
|
| 304 |
+
return df
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def get_first_timer_friendly_models(df: pd.DataFrame, limit_per_task: int = 3) -> pd.DataFrame:
|
| 308 |
+
"""Identify first-timer-friendly models based on popularity and performance, grouped by task.
|
| 309 |
+
|
| 310 |
+
A model is considered first-timer-friendly if it:
|
| 311 |
+
- Has high downloads (popular)
|
| 312 |
+
- Has fast load times (easy to start)
|
| 313 |
+
- Has fast inference times (quick results)
|
| 314 |
+
- Successfully completed benchmarks
|
| 315 |
+
|
| 316 |
+
Args:
|
| 317 |
+
df: DataFrame containing benchmark results
|
| 318 |
+
limit_per_task: Maximum number of models to return per task
|
| 319 |
+
|
| 320 |
+
Returns:
|
| 321 |
+
DataFrame with top first-timer-friendly models per task
|
| 322 |
+
"""
|
| 323 |
+
if df.empty:
|
| 324 |
+
return pd.DataFrame()
|
| 325 |
+
|
| 326 |
+
# Filter only successful benchmarks
|
| 327 |
+
filtered = df[df["status"] == "completed"].copy() if "status" in df.columns else df.copy()
|
| 328 |
+
|
| 329 |
+
if filtered.empty:
|
| 330 |
+
return pd.DataFrame()
|
| 331 |
+
|
| 332 |
+
# Check if task column exists
|
| 333 |
+
if "task" not in filtered.columns:
|
| 334 |
+
logger.warning("Task column not found in dataframe")
|
| 335 |
+
return pd.DataFrame()
|
| 336 |
+
|
| 337 |
+
# Calculate first-timer-friendliness score per task
|
| 338 |
+
all_results = []
|
| 339 |
+
|
| 340 |
+
for task in filtered["task"].unique():
|
| 341 |
+
task_df = filtered[filtered["task"] == task].copy()
|
| 342 |
+
|
| 343 |
+
if task_df.empty:
|
| 344 |
+
continue
|
| 345 |
+
|
| 346 |
+
# Normalize metrics within this task (lower is better for times, higher is better for popularity)
|
| 347 |
+
|
| 348 |
+
# Downloads score (0-1, higher is better)
|
| 349 |
+
if "downloads" in task_df.columns:
|
| 350 |
+
max_downloads = task_df["downloads"].max()
|
| 351 |
+
task_df["downloads_score"] = task_df["downloads"] / max_downloads if max_downloads > 0 else 0
|
| 352 |
+
else:
|
| 353 |
+
task_df["downloads_score"] = 0
|
| 354 |
+
|
| 355 |
+
# Likes score (0-1, higher is better)
|
| 356 |
+
if "likes" in task_df.columns:
|
| 357 |
+
max_likes = task_df["likes"].max()
|
| 358 |
+
task_df["likes_score"] = task_df["likes"] / max_likes if max_likes > 0 else 0
|
| 359 |
+
else:
|
| 360 |
+
task_df["likes_score"] = 0
|
| 361 |
+
|
| 362 |
+
# Load time score (0-1, lower time is better)
|
| 363 |
+
if "load_ms_p50" in task_df.columns:
|
| 364 |
+
max_load = task_df["load_ms_p50"].max()
|
| 365 |
+
task_df["load_score"] = 1 - (task_df["load_ms_p50"] / max_load) if max_load > 0 else 0
|
| 366 |
+
else:
|
| 367 |
+
task_df["load_score"] = 0
|
| 368 |
+
|
| 369 |
+
# Inference time score (0-1, lower time is better)
|
| 370 |
+
if "first_infer_ms_p50" in task_df.columns:
|
| 371 |
+
max_infer = task_df["first_infer_ms_p50"].max()
|
| 372 |
+
task_df["infer_score"] = 1 - (task_df["first_infer_ms_p50"] / max_infer) if max_infer > 0 else 0
|
| 373 |
+
else:
|
| 374 |
+
task_df["infer_score"] = 0
|
| 375 |
+
|
| 376 |
+
# Calculate weighted first-timer-friendliness score
|
| 377 |
+
# Weights: popularity (40%), load time (30%), inference time (30%)
|
| 378 |
+
task_df["first_timer_score"] = (
|
| 379 |
+
(task_df["downloads_score"] * 0.25) +
|
| 380 |
+
(task_df["likes_score"] * 0.15) +
|
| 381 |
+
(task_df["load_score"] * 0.30) +
|
| 382 |
+
(task_df["infer_score"] * 0.30)
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
# Group by model and take best score for each model within this task
|
| 386 |
+
# Filter out NaN scores before getting idxmax
|
| 387 |
+
idx_max_series = task_df.groupby("modelId")["first_timer_score"].idxmax()
|
| 388 |
+
# Drop NaN indices
|
| 389 |
+
valid_indices = idx_max_series.dropna()
|
| 390 |
+
if valid_indices.empty:
|
| 391 |
+
continue
|
| 392 |
+
best_per_model = task_df.loc[valid_indices]
|
| 393 |
+
|
| 394 |
+
# Sort by first-timer score and take top N for this task
|
| 395 |
+
top_for_task = best_per_model.sort_values("first_timer_score", ascending=False).head(limit_per_task)
|
| 396 |
+
|
| 397 |
+
# Drop intermediate scoring columns
|
| 398 |
+
score_cols = ["downloads_score", "likes_score", "load_score", "infer_score", "first_timer_score"]
|
| 399 |
+
top_for_task = top_for_task.drop(columns=[col for col in score_cols if col in top_for_task.columns])
|
| 400 |
+
|
| 401 |
+
all_results.append(top_for_task)
|
| 402 |
+
|
| 403 |
+
if not all_results:
|
| 404 |
+
return pd.DataFrame()
|
| 405 |
+
|
| 406 |
+
# Combine all results
|
| 407 |
+
result = pd.concat(all_results, ignore_index=True)
|
| 408 |
+
|
| 409 |
+
# Sort by task name for better organization
|
| 410 |
+
if "task" in result.columns:
|
| 411 |
+
result = result.sort_values("task")
|
| 412 |
+
|
| 413 |
+
return result
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
def get_webgpu_beginner_friendly_models(
|
| 417 |
+
df: pd.DataFrame,
|
| 418 |
+
limit_per_task: int = 5
|
| 419 |
+
) -> pd.DataFrame:
|
| 420 |
+
"""Get top beginner-friendly models that are WebGPU compatible, grouped by task.
|
| 421 |
+
|
| 422 |
+
A model is included if it:
|
| 423 |
+
- Has high first_timer_score (popular, fast to load, fast inference)
|
| 424 |
+
- Has successful WebGPU benchmark results (device=webgpu, status=completed)
|
| 425 |
+
|
| 426 |
+
Args:
|
| 427 |
+
df: DataFrame containing benchmark results
|
| 428 |
+
limit_per_task: Maximum number of models to return per task (default: 5)
|
| 429 |
+
|
| 430 |
+
Returns:
|
| 431 |
+
DataFrame with top WebGPU-compatible beginner-friendly models per task
|
| 432 |
+
"""
|
| 433 |
+
if df.empty:
|
| 434 |
+
return pd.DataFrame()
|
| 435 |
+
|
| 436 |
+
# Filter for WebGPU benchmarks that completed successfully
|
| 437 |
+
webgpu_filter = (
|
| 438 |
+
(df["device"] == "webgpu") &
|
| 439 |
+
(df["status"] == "completed")
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
# Check if required columns exist
|
| 443 |
+
if "device" not in df.columns or "status" not in df.columns:
|
| 444 |
+
logger.warning("Required columns (device, status) not found in dataframe")
|
| 445 |
+
return pd.DataFrame()
|
| 446 |
+
|
| 447 |
+
filtered = df[webgpu_filter].copy()
|
| 448 |
+
|
| 449 |
+
if filtered.empty:
|
| 450 |
+
logger.warning("No successful WebGPU benchmarks found")
|
| 451 |
+
return pd.DataFrame()
|
| 452 |
+
|
| 453 |
+
# Check if required columns exist
|
| 454 |
+
if "task" not in filtered.columns or "first_timer_score" not in filtered.columns:
|
| 455 |
+
logger.warning("Required columns (task, first_timer_score) not found in filtered dataframe")
|
| 456 |
+
return pd.DataFrame()
|
| 457 |
+
|
| 458 |
+
# Group by task and get top models
|
| 459 |
+
all_results = []
|
| 460 |
+
|
| 461 |
+
for task in filtered["task"].unique():
|
| 462 |
+
task_df = filtered[filtered["task"] == task].copy()
|
| 463 |
+
|
| 464 |
+
if task_df.empty:
|
| 465 |
+
continue
|
| 466 |
+
|
| 467 |
+
# Remove rows with NaN first_timer_score
|
| 468 |
+
task_df = task_df.dropna(subset=["first_timer_score"])
|
| 469 |
+
|
| 470 |
+
if task_df.empty:
|
| 471 |
+
continue
|
| 472 |
+
|
| 473 |
+
# For each model, get the benchmark with the highest first_timer_score
|
| 474 |
+
idx_max_series = task_df.groupby("modelId")["first_timer_score"].idxmax()
|
| 475 |
+
valid_indices = idx_max_series.dropna()
|
| 476 |
+
|
| 477 |
+
if valid_indices.empty:
|
| 478 |
+
continue
|
| 479 |
+
|
| 480 |
+
best_per_model = task_df.loc[valid_indices]
|
| 481 |
+
|
| 482 |
+
# Sort by first_timer_score (descending) and take top N
|
| 483 |
+
top_for_task = best_per_model.sort_values(
|
| 484 |
+
"first_timer_score",
|
| 485 |
+
ascending=False
|
| 486 |
+
).head(limit_per_task)
|
| 487 |
+
|
| 488 |
+
all_results.append(top_for_task)
|
| 489 |
+
|
| 490 |
+
if not all_results:
|
| 491 |
+
logger.warning("No models found after filtering and grouping")
|
| 492 |
+
return pd.DataFrame()
|
| 493 |
+
|
| 494 |
+
# Combine all results
|
| 495 |
+
result = pd.concat(all_results, ignore_index=True)
|
| 496 |
+
|
| 497 |
+
# Sort by task, then by first_timer_score (descending)
|
| 498 |
+
if "task" in result.columns and "first_timer_score" in result.columns:
|
| 499 |
+
result = result.sort_values(
|
| 500 |
+
["task", "first_timer_score"],
|
| 501 |
+
ascending=[True, False]
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
return result
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
def _get_usage_example(task_type: str, repo_id: str) -> tuple[str, str | None]:
|
| 508 |
+
"""Get usage example code snippet for a given task type.
|
| 509 |
+
|
| 510 |
+
Args:
|
| 511 |
+
task_type: The task type (e.g., 'text-generation', 'image-classification')
|
| 512 |
+
repo_id: The model repository ID (e.g., 'Xenova/gpt2')
|
| 513 |
+
|
| 514 |
+
Returns:
|
| 515 |
+
Tuple of (code_snippet, description)
|
| 516 |
+
"""
|
| 517 |
+
if task_type == "fill-mask":
|
| 518 |
+
return f"""const unmasker = await pipeline('fill-mask', '{repo_id}');
|
| 519 |
+
const output = await unmasker('The goal of life is [MASK].');
|
| 520 |
+
""", 'Perform masked language modelling (a.k.a. "fill-mask")'
|
| 521 |
+
elif task_type == "question-answering":
|
| 522 |
+
return f"""const answerer = await pipeline('question-answering', '{repo_id}');
|
| 523 |
+
const question = 'Who was Jim Henson?';
|
| 524 |
+
const context = 'Jim Henson was a nice puppet.';
|
| 525 |
+
const output = await answerer(question, context);
|
| 526 |
+
""", 'Run question answering'
|
| 527 |
+
elif task_type == "summarization":
|
| 528 |
+
return f"""const generator = await pipeline('summarization', '{repo_id}');
|
| 529 |
+
const text = 'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, ' +
|
| 530 |
+
'and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. ' +
|
| 531 |
+
'During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest ' +
|
| 532 |
+
'man-made structure in the world, a title it held for 41 years until the Chrysler Building in New ' +
|
| 533 |
+
'York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to ' +
|
| 534 |
+
'the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the ' +
|
| 535 |
+
'Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second ' +
|
| 536 |
+
'tallest free-standing structure in France after the Millau Viaduct.';
|
| 537 |
+
const output = await generator(text, {{
|
| 538 |
+
max_new_tokens: 100,
|
| 539 |
+
}});
|
| 540 |
+
""", 'Summarization'
|
| 541 |
+
elif task_type == "sentiment-analysis" or task_type == "text-classification":
|
| 542 |
+
return f"""const classifier = await pipeline('{task_type}', '{repo_id}');
|
| 543 |
+
const output = await classifier('I love transformers!');
|
| 544 |
+
""", None
|
| 545 |
+
elif task_type == "text-generation":
|
| 546 |
+
return f"""const generator = await pipeline('text-generation', '{repo_id}');
|
| 547 |
+
const output = await generator('Once upon a time, there was', {{ max_new_tokens: 10 }});
|
| 548 |
+
""", 'Text generation'
|
| 549 |
+
elif task_type == "text2text-generation":
|
| 550 |
+
return f"""const generator = await pipeline('text2text-generation', '{repo_id}');
|
| 551 |
+
const output = await generator('how can I become more healthy?', {{
|
| 552 |
+
max_new_tokens: 100,
|
| 553 |
+
}});
|
| 554 |
+
""", 'Text-to-text generation'
|
| 555 |
+
elif task_type == "token-classification" or task_type == "ner":
|
| 556 |
+
return f"""const classifier = await pipeline('token-classification', '{repo_id}');
|
| 557 |
+
const output = await classifier('My name is Sarah and I live in London');
|
| 558 |
+
""", 'Perform named entity recognition'
|
| 559 |
+
elif task_type == "translation":
|
| 560 |
+
return f"""const translator = await pipeline('translation', '{repo_id}');
|
| 561 |
+
const output = await translator('Life is like a box of chocolate.', {{
|
| 562 |
+
src_lang: '...',
|
| 563 |
+
tgt_lang: '...',
|
| 564 |
+
}});
|
| 565 |
+
""", 'Multilingual translation'
|
| 566 |
+
elif task_type == "zero-shot-classification":
|
| 567 |
+
return f"""const classifier = await pipeline('zero-shot-classification', '{repo_id}');
|
| 568 |
+
const output = await classifier(
|
| 569 |
+
'I love transformers!',
|
| 570 |
+
['positive', 'negative']
|
| 571 |
+
);
|
| 572 |
+
""", 'Zero shot classification'
|
| 573 |
+
elif task_type == "feature-extraction":
|
| 574 |
+
return f"""const extractor = await pipeline('feature-extraction', '{repo_id}');
|
| 575 |
+
const output = await extractor('This is a simple test.');
|
| 576 |
+
""", 'Run feature extraction'
|
| 577 |
+
# Vision
|
| 578 |
+
elif task_type == "background-removal":
|
| 579 |
+
return f"""const segmenter = await pipeline('background-removal', '{repo_id}');
|
| 580 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/portrait-of-woman_small.jpg';
|
| 581 |
+
const output = await segmenter(url);
|
| 582 |
+
""", 'Perform background removal'
|
| 583 |
+
elif task_type == "depth-estimation":
|
| 584 |
+
return f"""const depth_estimator = await pipeline('depth-estimation', '{repo_id}');
|
| 585 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
|
| 586 |
+
const out = await depth_estimator(url);
|
| 587 |
+
""", 'Depth estimation'
|
| 588 |
+
elif task_type == "image-classification":
|
| 589 |
+
return f"""const classifier = await pipeline('image-classification', '{repo_id}');
|
| 590 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
|
| 591 |
+
const output = await classifier(url);
|
| 592 |
+
""", 'Classify an image'
|
| 593 |
+
elif task_type == "image-segmentation":
|
| 594 |
+
return f"""const segmenter = await pipeline('image-segmentation', '{repo_id}');
|
| 595 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
|
| 596 |
+
const output = await segmenter(url);
|
| 597 |
+
""", 'Perform image segmentation'
|
| 598 |
+
elif task_type == "image-to-image":
|
| 599 |
+
return f"""const processor = await pipeline('image-to-image', '{repo_id}');
|
| 600 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
|
| 601 |
+
const output = await processor(url);
|
| 602 |
+
""", None
|
| 603 |
+
elif task_type == "object-detection":
|
| 604 |
+
return f"""const detector = await pipeline('object-detection', '{repo_id}');
|
| 605 |
+
const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
|
| 606 |
+
const output = await detector(img, {{ threshold: 0.9 }});
|
| 607 |
+
""", 'Run object-detection'
|
| 608 |
+
elif task_type == "image-feature-extraction":
|
| 609 |
+
return f"""const image_feature_extractor = await pipeline('image-feature-extraction', '{repo_id}');
|
| 610 |
+
const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png';
|
| 611 |
+
const features = await image_feature_extractor(url);
|
| 612 |
+
""", 'Perform image feature extraction'
|
| 613 |
+
# Audio
|
| 614 |
+
elif task_type == "audio-classification":
|
| 615 |
+
return f"""const classifier = await pipeline('audio-classification', '{repo_id}');
|
| 616 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
|
| 617 |
+
const output = await classifier(url);
|
| 618 |
+
""", 'Perform audio classification'
|
| 619 |
+
elif task_type == "automatic-speech-recognition":
|
| 620 |
+
return f"""const transcriber = await pipeline('automatic-speech-recognition', '{repo_id}');
|
| 621 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
|
| 622 |
+
const output = await transcriber(url);
|
| 623 |
+
""", 'Transcribe audio from a URL'
|
| 624 |
+
elif task_type == "text-to-audio" or task_type == "text-to-speech":
|
| 625 |
+
return f"""const synthesizer = await pipeline('text-to-speech', '{repo_id}');
|
| 626 |
+
const output = await synthesizer('Hello, my dog is cute');
|
| 627 |
+
""", 'Generate audio from text'
|
| 628 |
+
# Multimodal
|
| 629 |
+
elif task_type == "document-question-answering":
|
| 630 |
+
return f"""const qa_pipeline = await pipeline('document-question-answering', '{repo_id}');
|
| 631 |
+
const image = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/invoice.png';
|
| 632 |
+
const question = 'What is the invoice number?';
|
| 633 |
+
const output = await qa_pipeline(image, question);
|
| 634 |
+
""", 'Answer questions about a document'
|
| 635 |
+
elif task_type == "image-to-text":
|
| 636 |
+
return f"""const captioner = await pipeline('image-to-text', '{repo_id}');
|
| 637 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
|
| 638 |
+
const output = await captioner(url);
|
| 639 |
+
""", 'Generate a caption for an image'
|
| 640 |
+
elif task_type == "zero-shot-audio-classification":
|
| 641 |
+
return f"""const classifier = await pipeline('zero-shot-audio-classification', '{repo_id}');
|
| 642 |
+
const audio = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/dog_barking.wav';
|
| 643 |
+
const candidate_labels = ['dog', 'vaccum cleaner'];
|
| 644 |
+
const scores = await classifier(audio, candidate_labels);
|
| 645 |
+
""", 'Perform zero-shot audio classification'
|
| 646 |
+
elif task_type == "zero-shot-image-classification":
|
| 647 |
+
return f"""const classifier = await pipeline('zero-shot-image-classification', '{repo_id}');
|
| 648 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/tiger.jpg';
|
| 649 |
+
const output = await classifier(url, ['tiger', 'horse', 'dog']);
|
| 650 |
+
""", 'Zero shot image classification'
|
| 651 |
+
elif task_type == "zero-shot-object-detection":
|
| 652 |
+
return f"""const detector = await pipeline('zero-shot-object-detection', '{repo_id}');
|
| 653 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/astronaut.png';
|
| 654 |
+
const candidate_labels = ['human face', 'rocket', 'helmet', 'american flag'];
|
| 655 |
+
const output = await detector(url, candidate_labels);
|
| 656 |
+
""", 'Zero-shot object detection'
|
| 657 |
+
else:
|
| 658 |
+
logger.warning(f"No usage example found for task type: {task_type}")
|
| 659 |
+
return f"""const pipe = await pipeline('{task_type}', '{repo_id}');
|
| 660 |
+
const result = await pipe('input text or data');
|
| 661 |
+
console.log(result);
|
| 662 |
+
""", None
|
| 663 |
+
|
| 664 |
+
|
| 665 |
+
def format_recommended_models_as_markdown(df: pd.DataFrame) -> str:
|
| 666 |
+
"""Format recommended WebGPU models as markdown for llms.txt embedding.
|
| 667 |
+
|
| 668 |
+
Args:
|
| 669 |
+
df: DataFrame containing recommended models (output from get_webgpu_beginner_friendly_models)
|
| 670 |
+
|
| 671 |
+
Returns:
|
| 672 |
+
Formatted markdown string
|
| 673 |
+
"""
|
| 674 |
+
if df.empty:
|
| 675 |
+
return "No recommended models available."
|
| 676 |
+
|
| 677 |
+
markdown_lines = [
|
| 678 |
+
"# Recommended Transformers.js Models for First-Time Trials",
|
| 679 |
+
"",
|
| 680 |
+
"This guide provides curated model recommendations for each task type, selected for their:",
|
| 681 |
+
"- **Popularity**: Widely used with strong community support",
|
| 682 |
+
"- **Performance**: Fast loading and inference times",
|
| 683 |
+
"- **WebGPU Compatibility**: GPU-accelerated in modern browsers",
|
| 684 |
+
"",
|
| 685 |
+
"**Important:** These recommendations are designed for initial experimentation and learning. "
|
| 686 |
+
"Many other models are available for each task. "
|
| 687 |
+
"**You should evaluate and choose the best model for your specific use case, performance requirements, and constraints.**",
|
| 688 |
+
"",
|
| 689 |
+
"---",
|
| 690 |
+
"",
|
| 691 |
+
"## About the Model Recommendations",
|
| 692 |
+
"",
|
| 693 |
+
"The models below are selected for their popularity and ease of use, making them ideal for initial experimentation. "
|
| 694 |
+
"**This list does not cover all available models** - you should evaluate and select the best model for your specific use case and requirements.",
|
| 695 |
+
"",
|
| 696 |
+
]
|
| 697 |
+
|
| 698 |
+
# Group by task
|
| 699 |
+
if "task" not in df.columns:
|
| 700 |
+
return "No task information available."
|
| 701 |
+
|
| 702 |
+
for task in sorted(df["task"].unique()):
|
| 703 |
+
task_df = df[df["task"] == task].copy()
|
| 704 |
+
|
| 705 |
+
if task_df.empty:
|
| 706 |
+
continue
|
| 707 |
+
|
| 708 |
+
# Add task header
|
| 709 |
+
markdown_lines.append(f"## {task.title()}")
|
| 710 |
+
markdown_lines.append("")
|
| 711 |
+
|
| 712 |
+
# Sort by first_timer_score descending
|
| 713 |
+
if "first_timer_score" in task_df.columns:
|
| 714 |
+
task_df = task_df.sort_values("first_timer_score", ascending=False)
|
| 715 |
+
|
| 716 |
+
# Get the first/best model for the usage example
|
| 717 |
+
first_row = task_df.iloc[0]
|
| 718 |
+
first_model_id = first_row.get("modelId", "")
|
| 719 |
+
|
| 720 |
+
# Add usage example using the top model
|
| 721 |
+
if first_model_id:
|
| 722 |
+
code_snippet, description = _get_usage_example(task, first_model_id)
|
| 723 |
+
|
| 724 |
+
if description:
|
| 725 |
+
markdown_lines.append(f"**Usage Example:** {description}")
|
| 726 |
+
else:
|
| 727 |
+
markdown_lines.append("**Usage Example:**")
|
| 728 |
+
markdown_lines.append("")
|
| 729 |
+
markdown_lines.append("```javascript")
|
| 730 |
+
markdown_lines.append(code_snippet.strip())
|
| 731 |
+
markdown_lines.append("```")
|
| 732 |
+
markdown_lines.append("")
|
| 733 |
+
|
| 734 |
+
# Add section header for model recommendations
|
| 735 |
+
markdown_lines.append("### Recommended Models for First-Time Trials")
|
| 736 |
+
markdown_lines.append("")
|
| 737 |
+
|
| 738 |
+
# Add each model
|
| 739 |
+
for idx, row in task_df.iterrows():
|
| 740 |
+
model_id = row.get("modelId", "Unknown")
|
| 741 |
+
score = row.get("first_timer_score", None)
|
| 742 |
+
downloads = row.get("downloads", 0)
|
| 743 |
+
likes = row.get("likes", 0)
|
| 744 |
+
load_time = row.get("load_ms_p50", None)
|
| 745 |
+
infer_time = row.get("first_infer_ms_p50", None)
|
| 746 |
+
|
| 747 |
+
# Model entry
|
| 748 |
+
markdown_lines.append(f"### {model_id}")
|
| 749 |
+
markdown_lines.append("")
|
| 750 |
+
|
| 751 |
+
# WebGPU compatibility
|
| 752 |
+
markdown_lines.append("**WebGPU Compatible:** ✅ Yes")
|
| 753 |
+
markdown_lines.append("")
|
| 754 |
+
|
| 755 |
+
# Metrics
|
| 756 |
+
metrics = []
|
| 757 |
+
if load_time is not None:
|
| 758 |
+
metrics.append(f"Load: {load_time:.1f}ms")
|
| 759 |
+
if infer_time is not None:
|
| 760 |
+
metrics.append(f"Inference: {infer_time:.1f}ms")
|
| 761 |
+
if downloads:
|
| 762 |
+
if downloads >= 1_000_000:
|
| 763 |
+
downloads_str = f"{downloads / 1_000_000:.1f}M"
|
| 764 |
+
elif downloads >= 1_000:
|
| 765 |
+
downloads_str = f"{downloads / 1_000:.1f}k"
|
| 766 |
+
else:
|
| 767 |
+
downloads_str = str(downloads)
|
| 768 |
+
metrics.append(f"Downloads: {downloads_str}")
|
| 769 |
+
if likes:
|
| 770 |
+
metrics.append(f"Likes: {likes}")
|
| 771 |
+
|
| 772 |
+
if metrics:
|
| 773 |
+
markdown_lines.append(f"**Metrics:** {' | '.join(metrics)}")
|
| 774 |
+
|
| 775 |
+
markdown_lines.append("")
|
| 776 |
+
|
| 777 |
+
markdown_lines.append("---")
|
| 778 |
+
markdown_lines.append("")
|
| 779 |
+
|
| 780 |
+
# Add footer
|
| 781 |
+
markdown_lines.extend([
|
| 782 |
+
"## About These Recommendations",
|
| 783 |
+
"",
|
| 784 |
+
"### Selection Criteria",
|
| 785 |
+
"",
|
| 786 |
+
"Models in this guide are selected based on:",
|
| 787 |
+
"- **Popularity**: High download counts and community engagement on HuggingFace Hub",
|
| 788 |
+
"- **Performance**: Fast loading and inference times based on benchmark results",
|
| 789 |
+
"- **Compatibility**: Verified WebGPU support for GPU-accelerated browser execution",
|
| 790 |
+
"",
|
| 791 |
+
"### For Production Use",
|
| 792 |
+
"",
|
| 793 |
+
"These recommendations are optimized for first-time trials and learning. "
|
| 794 |
+
"For production applications, consider:",
|
| 795 |
+
"- Evaluating multiple models for your specific use case",
|
| 796 |
+
"- Testing with your actual data and performance requirements",
|
| 797 |
+
"- Reviewing the full benchmark results for comprehensive comparisons",
|
| 798 |
+
"- Exploring specialized models that may better fit your needs",
|
| 799 |
+
"",
|
| 800 |
+
"Visit the full leaderboard to explore all available models and their benchmark results.",
|
| 801 |
+
])
|
| 802 |
+
|
| 803 |
+
return "\n".join(markdown_lines)
|
| 804 |
+
|
| 805 |
+
|
| 806 |
+
def get_unique_values(df: pd.DataFrame, column: str) -> List[str]:
|
| 807 |
+
"""Get unique values from a column for dropdown choices.
|
| 808 |
+
|
| 809 |
+
Args:
|
| 810 |
+
df: DataFrame to extract values from
|
| 811 |
+
column: Column name
|
| 812 |
+
|
| 813 |
+
Returns:
|
| 814 |
+
List of unique values with "All" as first item
|
| 815 |
+
"""
|
| 816 |
+
if df.empty or column not in df.columns:
|
| 817 |
+
return ["All"]
|
| 818 |
+
|
| 819 |
+
values = df[column].dropna().unique().tolist()
|
| 820 |
+
return ["All"] + sorted([str(v) for v in values])
|
src/leaderboard/formatters.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Formatting utilities for displaying benchmark data with emojis.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from typing import Any, Optional
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def format_platform(platform: str) -> str:
|
| 10 |
+
"""Format platform with emoji."""
|
| 11 |
+
emoji_map = {
|
| 12 |
+
"node": "🟢",
|
| 13 |
+
"web": "🌐",
|
| 14 |
+
}
|
| 15 |
+
emoji = emoji_map.get(platform, "")
|
| 16 |
+
return f"{emoji} {platform}" if emoji else platform
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def format_device(device: str) -> str:
|
| 20 |
+
"""Format device with emoji."""
|
| 21 |
+
emoji_map = {
|
| 22 |
+
"wasm": "📦",
|
| 23 |
+
"webgpu": "⚡",
|
| 24 |
+
"cpu": "🖥️",
|
| 25 |
+
"cuda": "🎮",
|
| 26 |
+
}
|
| 27 |
+
emoji = emoji_map.get(device, "")
|
| 28 |
+
return f"{emoji} {device}" if emoji else device
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def format_browser(browser: str) -> str:
|
| 32 |
+
"""Format browser with emoji."""
|
| 33 |
+
if not browser:
|
| 34 |
+
return ""
|
| 35 |
+
|
| 36 |
+
emoji_map = {
|
| 37 |
+
"chromium": "🔵",
|
| 38 |
+
"chrome": "🔵",
|
| 39 |
+
"firefox": "🦊",
|
| 40 |
+
"webkit": "🧭",
|
| 41 |
+
"safari": "🧭",
|
| 42 |
+
}
|
| 43 |
+
emoji = emoji_map.get(browser.lower(), "")
|
| 44 |
+
return f"{emoji} {browser}" if emoji else browser
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def format_status(status: str) -> str:
|
| 48 |
+
"""Format status with emoji."""
|
| 49 |
+
emoji_map = {
|
| 50 |
+
"completed": "✅",
|
| 51 |
+
"failed": "❌",
|
| 52 |
+
"running": "🔄",
|
| 53 |
+
"pending": "⏳",
|
| 54 |
+
}
|
| 55 |
+
emoji = emoji_map.get(status, "")
|
| 56 |
+
return f"{emoji} {status}" if emoji else status
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def format_mode(mode: str) -> str:
|
| 60 |
+
"""Format mode with emoji."""
|
| 61 |
+
emoji_map = {
|
| 62 |
+
"warm": "🔥",
|
| 63 |
+
"cold": "❄️",
|
| 64 |
+
}
|
| 65 |
+
emoji = emoji_map.get(mode, "")
|
| 66 |
+
return f"{emoji} {mode}" if emoji else mode
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def format_headed(headed: bool) -> str:
|
| 70 |
+
"""Format headed mode with emoji."""
|
| 71 |
+
return "👁️ Yes" if headed else "No"
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def format_metric_ms(value: Optional[float], metric_type: str = "inference") -> str:
|
| 75 |
+
"""Format metric in milliseconds with performance emoji.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
value: Metric value in milliseconds
|
| 79 |
+
metric_type: Type of metric ('load', 'inference')
|
| 80 |
+
|
| 81 |
+
Returns:
|
| 82 |
+
Formatted string with emoji
|
| 83 |
+
"""
|
| 84 |
+
if value is None or value == 0:
|
| 85 |
+
return "-"
|
| 86 |
+
|
| 87 |
+
# Different thresholds for different metric types
|
| 88 |
+
if metric_type == "load":
|
| 89 |
+
# Load time thresholds (in ms)
|
| 90 |
+
if value < 100:
|
| 91 |
+
emoji = "🚀" # Very fast
|
| 92 |
+
elif value < 500:
|
| 93 |
+
emoji = "⚡" # Fast
|
| 94 |
+
elif value < 2000:
|
| 95 |
+
emoji = "✅" # Good
|
| 96 |
+
elif value < 5000:
|
| 97 |
+
emoji = "⚠️" # Slow
|
| 98 |
+
else:
|
| 99 |
+
emoji = "🐌" # Very slow
|
| 100 |
+
else: # inference
|
| 101 |
+
# Inference time thresholds (in ms)
|
| 102 |
+
if value < 5:
|
| 103 |
+
emoji = "🚀" # Very fast
|
| 104 |
+
elif value < 20:
|
| 105 |
+
emoji = "⚡" # Fast
|
| 106 |
+
elif value < 50:
|
| 107 |
+
emoji = "✅" # Good
|
| 108 |
+
elif value < 100:
|
| 109 |
+
emoji = "⚠️" # Slow
|
| 110 |
+
else:
|
| 111 |
+
emoji = "🐌" # Very slow
|
| 112 |
+
|
| 113 |
+
return f"{emoji} {value:.1f}ms"
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def format_duration(duration_s: Optional[float]) -> str:
|
| 117 |
+
"""Format duration with emoji."""
|
| 118 |
+
if duration_s is None or duration_s == 0:
|
| 119 |
+
return "-"
|
| 120 |
+
|
| 121 |
+
if duration_s < 5:
|
| 122 |
+
emoji = "🚀" # Very fast
|
| 123 |
+
elif duration_s < 15:
|
| 124 |
+
emoji = "⚡" # Fast
|
| 125 |
+
elif duration_s < 60:
|
| 126 |
+
emoji = "✅" # Good
|
| 127 |
+
elif duration_s < 300:
|
| 128 |
+
emoji = "⚠️" # Slow
|
| 129 |
+
else:
|
| 130 |
+
emoji = "🐌" # Very slow
|
| 131 |
+
|
| 132 |
+
return f"{emoji} {duration_s:.1f}s"
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def format_memory(memory_gb: Optional[int]) -> str:
|
| 136 |
+
"""Format memory with emoji."""
|
| 137 |
+
if memory_gb is None or memory_gb == 0:
|
| 138 |
+
return "-"
|
| 139 |
+
|
| 140 |
+
if memory_gb >= 32:
|
| 141 |
+
emoji = "💪" # High
|
| 142 |
+
elif memory_gb >= 16:
|
| 143 |
+
emoji = "✅" # Good
|
| 144 |
+
elif memory_gb >= 8:
|
| 145 |
+
emoji = "⚠️" # Medium
|
| 146 |
+
else:
|
| 147 |
+
emoji = "📉" # Low
|
| 148 |
+
|
| 149 |
+
return f"{emoji} {memory_gb}GB"
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def format_cpu_cores(cores: Optional[int]) -> str:
|
| 153 |
+
"""Format CPU cores with emoji."""
|
| 154 |
+
if cores is None or cores == 0:
|
| 155 |
+
return "-"
|
| 156 |
+
|
| 157 |
+
if cores >= 16:
|
| 158 |
+
emoji = "💪" # Many
|
| 159 |
+
elif cores >= 8:
|
| 160 |
+
emoji = "✅" # Good
|
| 161 |
+
elif cores >= 4:
|
| 162 |
+
emoji = "⚠️" # Medium
|
| 163 |
+
else:
|
| 164 |
+
emoji = "📉" # Few
|
| 165 |
+
|
| 166 |
+
return f"{emoji} {cores} cores"
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def format_timestamp(timestamp: Optional[datetime]) -> str:
|
| 170 |
+
"""Format timestamp as datetime string.
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
timestamp: datetime object
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
Formatted datetime string
|
| 177 |
+
"""
|
| 178 |
+
if timestamp is None:
|
| 179 |
+
return "-"
|
| 180 |
+
|
| 181 |
+
try:
|
| 182 |
+
# Format as readable datetime
|
| 183 |
+
return timestamp.strftime("%Y-%m-%d %H:%M:%S")
|
| 184 |
+
except (ValueError, AttributeError):
|
| 185 |
+
return str(timestamp)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def format_downloads(downloads: Optional[int]) -> str:
|
| 189 |
+
"""Format downloads count with emoji.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
downloads: Number of downloads
|
| 193 |
+
|
| 194 |
+
Returns:
|
| 195 |
+
Formatted string with emoji
|
| 196 |
+
"""
|
| 197 |
+
if downloads is None or downloads == 0:
|
| 198 |
+
return "-"
|
| 199 |
+
|
| 200 |
+
# Format large numbers
|
| 201 |
+
if downloads >= 1_000_000:
|
| 202 |
+
formatted = f"{downloads / 1_000_000:.1f}M"
|
| 203 |
+
emoji = "🔥" # Very popular
|
| 204 |
+
elif downloads >= 100_000:
|
| 205 |
+
formatted = f"{downloads / 1_000:.0f}k"
|
| 206 |
+
emoji = "⭐" # Popular
|
| 207 |
+
elif downloads >= 10_000:
|
| 208 |
+
formatted = f"{downloads / 1_000:.1f}k"
|
| 209 |
+
emoji = "✨" # Well-known
|
| 210 |
+
elif downloads >= 1_000:
|
| 211 |
+
formatted = f"{downloads / 1_000:.1f}k"
|
| 212 |
+
emoji = "📊" # Moderate
|
| 213 |
+
else:
|
| 214 |
+
formatted = str(downloads)
|
| 215 |
+
emoji = "📈" # New/niche
|
| 216 |
+
|
| 217 |
+
return f"{emoji} {formatted}"
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def format_likes(likes: Optional[int]) -> str:
|
| 221 |
+
"""Format likes count with emoji.
|
| 222 |
+
|
| 223 |
+
Args:
|
| 224 |
+
likes: Number of likes
|
| 225 |
+
|
| 226 |
+
Returns:
|
| 227 |
+
Formatted string with emoji
|
| 228 |
+
"""
|
| 229 |
+
if likes is None or likes == 0:
|
| 230 |
+
return "-"
|
| 231 |
+
|
| 232 |
+
# Format based on popularity
|
| 233 |
+
if likes >= 1000:
|
| 234 |
+
emoji = "💖" # Very popular
|
| 235 |
+
elif likes >= 100:
|
| 236 |
+
emoji = "❤️" # Popular
|
| 237 |
+
elif likes >= 50:
|
| 238 |
+
emoji = "💙" # Well-liked
|
| 239 |
+
elif likes >= 10:
|
| 240 |
+
emoji = "💚" # Moderate
|
| 241 |
+
else:
|
| 242 |
+
emoji = "🤍" # Few likes
|
| 243 |
+
|
| 244 |
+
return f"{emoji} {likes}"
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
def format_first_timer_score(score: Optional[float]) -> str:
|
| 248 |
+
"""Format first-timer-friendly score with emoji.
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
score: First-timer score (0-100)
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
Formatted string with emoji
|
| 255 |
+
"""
|
| 256 |
+
if score is None:
|
| 257 |
+
return "-"
|
| 258 |
+
|
| 259 |
+
# Format based on score (0-100 scale)
|
| 260 |
+
if score >= 80:
|
| 261 |
+
emoji = "⭐⭐⭐" # Excellent
|
| 262 |
+
elif score >= 60:
|
| 263 |
+
emoji = "⭐⭐" # Good
|
| 264 |
+
elif score >= 40:
|
| 265 |
+
emoji = "⭐" # Fair
|
| 266 |
+
else:
|
| 267 |
+
emoji = "·" # Below average
|
| 268 |
+
|
| 269 |
+
return f"{emoji} {score:.0f}"
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def apply_formatting(df_dict: dict) -> dict:
|
| 273 |
+
"""Apply emoji formatting to a benchmark result dictionary.
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
df_dict: Dictionary containing benchmark data (one row)
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
Dictionary with formatted values
|
| 280 |
+
"""
|
| 281 |
+
formatted = df_dict.copy()
|
| 282 |
+
|
| 283 |
+
# Format categorical fields
|
| 284 |
+
if "platform" in formatted:
|
| 285 |
+
formatted["platform"] = format_platform(formatted["platform"])
|
| 286 |
+
|
| 287 |
+
if "device" in formatted:
|
| 288 |
+
formatted["device"] = format_device(formatted["device"])
|
| 289 |
+
|
| 290 |
+
if "browser" in formatted:
|
| 291 |
+
formatted["browser"] = format_browser(formatted["browser"])
|
| 292 |
+
|
| 293 |
+
if "status" in formatted:
|
| 294 |
+
formatted["status"] = format_status(formatted["status"])
|
| 295 |
+
|
| 296 |
+
if "mode" in formatted:
|
| 297 |
+
formatted["mode"] = format_mode(formatted["mode"])
|
| 298 |
+
|
| 299 |
+
if "headed" in formatted:
|
| 300 |
+
formatted["headed"] = format_headed(formatted["headed"])
|
| 301 |
+
|
| 302 |
+
# Format metrics
|
| 303 |
+
if "load_ms_p50" in formatted:
|
| 304 |
+
formatted["load_ms_p50"] = format_metric_ms(formatted["load_ms_p50"], "load")
|
| 305 |
+
|
| 306 |
+
if "load_ms_p90" in formatted:
|
| 307 |
+
formatted["load_ms_p90"] = format_metric_ms(formatted["load_ms_p90"], "load")
|
| 308 |
+
|
| 309 |
+
if "first_infer_ms_p50" in formatted:
|
| 310 |
+
formatted["first_infer_ms_p50"] = format_metric_ms(formatted["first_infer_ms_p50"], "inference")
|
| 311 |
+
|
| 312 |
+
if "first_infer_ms_p90" in formatted:
|
| 313 |
+
formatted["first_infer_ms_p90"] = format_metric_ms(formatted["first_infer_ms_p90"], "inference")
|
| 314 |
+
|
| 315 |
+
if "subsequent_infer_ms_p50" in formatted:
|
| 316 |
+
formatted["subsequent_infer_ms_p50"] = format_metric_ms(formatted["subsequent_infer_ms_p50"], "inference")
|
| 317 |
+
|
| 318 |
+
if "subsequent_infer_ms_p90" in formatted:
|
| 319 |
+
formatted["subsequent_infer_ms_p90"] = format_metric_ms(formatted["subsequent_infer_ms_p90"], "inference")
|
| 320 |
+
|
| 321 |
+
# Format environment info
|
| 322 |
+
if "memory_gb" in formatted:
|
| 323 |
+
formatted["memory_gb"] = format_memory(formatted["memory_gb"])
|
| 324 |
+
|
| 325 |
+
if "cpuCores" in formatted:
|
| 326 |
+
formatted["cpuCores"] = format_cpu_cores(formatted["cpuCores"])
|
| 327 |
+
|
| 328 |
+
if "duration_s" in formatted:
|
| 329 |
+
formatted["duration_s"] = format_duration(formatted["duration_s"])
|
| 330 |
+
|
| 331 |
+
# Format timestamp
|
| 332 |
+
if "timestamp" in formatted:
|
| 333 |
+
formatted["timestamp"] = format_timestamp(formatted["timestamp"])
|
| 334 |
+
|
| 335 |
+
# Format HuggingFace metadata
|
| 336 |
+
if "downloads" in formatted:
|
| 337 |
+
formatted["downloads"] = format_downloads(formatted["downloads"])
|
| 338 |
+
|
| 339 |
+
if "likes" in formatted:
|
| 340 |
+
formatted["likes"] = format_likes(formatted["likes"])
|
| 341 |
+
|
| 342 |
+
# Format first-timer score
|
| 343 |
+
if "first_timer_score" in formatted:
|
| 344 |
+
formatted["first_timer_score"] = format_first_timer_score(formatted["first_timer_score"])
|
| 345 |
+
|
| 346 |
+
return formatted
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|